Qsurface

Mark Shui Hu

Dec 01, 2020

MAIN USAGE

1 Installation
1.1 Requirements o v it et e e e e e e e e e e e e e e e e e

2 Usage
2.1 Plotting oo e e e e e
2.2 Command lineinterface e e e

3 Modules
3.1 Running simulations e e e
3.2 Running a threshold simulation L
33 Codeelements i e e e e e e e e e e e e
34 Templatecode L e e e e e e e e e e e e e
3.5 Codetypes . v o v e e e e e e e e e e e e e e e e
3.6 Template eITor e e e e e e e e e e e e e e e e e
37 EITOTLYPES . . o o o o it e e e e e e e e e e e e e e e
3.8 Templatedecoder. L e e e e e e e e
3.9 Decoders e e e e e e e e e e
3.10 Plotting template e e e e e e e e e e e e e e e e e e e

4 License

5 Indices and tables

Bibliography

Python Module Index

Index

79

81

83

85

87

Qsurface

Qsurface is a simulation package for the surface code, and is designed to modularize 3 aspects of a surface code
simulation.

1. The surface code
2. The error model
3. The used decoder

New types of surface codes, error modules and decoders can be added to Qsurface by using the included templates for
each of the three core module categories.

The current included decoders are:
* The Mininum-Weight Perfect Matching (mwpm) decoder.

e Delfosse’s and Nickerson’s Union-Find (unionfind) decoder, which has almost-linear worst-case time com-
plexity.

* Our modification to the Union-Find decoder; the Union-Find Node-Suspension (ufns) decoder, which improves
the threshold of the Union-Find decoder to near MWPM performance, while retaining quasi-linear worst-case
time complexity.

The compatibility of these decoders with the included surface codes are listed below.

Decoders toric code | planar code
mwpm
unionfind
ufns

MAIN USAGE 1

https://pypi.org/project/qsurface/
https://github.com/watermarkhu/qsurface/workflows/Build/badge.svg
https://qsurface.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/watermarkhu/qsurface
https://mybinder.org/v2/gh/watermarkhu/qsurface/master?filepath=examples.ipynb
https://img.shields.io/pypi/l/qsurface
https://doi.org/10.5281/zenodo.4247617
http://unitary.fund
https://arxiv.org/pdf/1709.06218.pdf

Qsurface

2 MAIN USAGE

CHAPTER
ONE

INSTALLATION

All required packages can be installed through:

’pip install gsurface

1.1 Requirements

e Python 3.7+
 Tkinter or PyQt5 for interactive plotting.

* Matplotlib 3.4+ for plotting on a 3D lattice (Refers to a future release of matplotlib, see pull request)

1.1.1 MWPM decoder

The MWPM decoder utilizes net workx for finding the minimal weights in a fully connected graph. This implemen-
tation is however rather slow compared to Kolmogorov’s Blossom V algorithm. Blossom V has its own license and is
thus not included with Qsurface. We do provided a single function to download and compile Blossom V, and to setup
the integration with Qsurface automatically.

>>> from gsurface.decoders import mwpm
>>> mwpm.get_blossomv ()

https://docs.python.org/3/library/tkinter.html
https://riverbankcomputing.com/software/pyqt/intro
https://github.com/matplotlib/matplotlib/pull/18816
https://pub.ist.ac.at/~vnk/software.html

Qsurface

4 Chapter 1. Installation

CHAPTER
TWO

USAGE

To simulate the toric code and simulate with bitflip error for 10 iterations and decode with the MWPM decoder:

>>> from gsurface.main import initialize, run

>>> code, decoder = initialize((6,6), "toric", "mwpm", enabled_errors=["pauli"])
>>> run (code, decoder, iterations=10, error_rates = {"p_bitflip": 0.1})
{'no_error': 8}

Benchmarking of decoders can be enabled by attaching a benchmarker object to the decoder. See the docs for the
syntax and information to setup benchmarking.

>>> from gsurface.main import initialize, run

>>> benchmarker = BenchmarkDecoder ({"decode":"duration"})

>>> run (code, decoder, iterations=10, error_rates = {"p_bitflip": 0.1},
—benchmark=benchmarker)

{'"no_error': 8,

'benchmark': {'success_rate': [10, 107,

'seed': 12447.413636559,
'durations': {'decode': {'mean': 0.00244155000000319,
'std': 0.002170364089572033}}1}}

2.1 Plotting

The figures in Qsurface allows for step-by-step visualization of the surface code simulation (and if supported the
decoding process). Each figure logs its history such that the user can move backwards in time to view past states of
the surface (and decoder). Press h when the figure is open for more information.

>>> from gsurface.main import initialize, run

>>> code, decoder = initialize((6,6), "toric", "mwpm", enabled_errors=["pauli"], ,
—plotting=True, initial_states=(0,0))
>>> run(code, decoder, error_rates = {"p_bitflip": 0.1, "p_phaseflip": 0.1}, decode_

—+initial=False)

Plotting will be performed on a 3D axis if faulty measurements are enabled.

>>> code, decoder = initialize((3,3), "toric", "mwpm", enabled_errors=["pauli"],
—faulty_measurements=True, plotting=True, initial_states=(0,0))

>>> run(code, decoder, error_rates = {"p_bitflip": 0.05, "p_bitflip plag": 0.05},
—decode_initial=False)

https://raw.githubusercontent.com/watermarkhu/qsurface/master/images/toric-2d.gif

Qsurface

In IPython, inline images are created for each iteration of the plot, which can be tested in the example notebook.

2.2 Command line interface

Simulations can also be initiated from the command line

$ python -m gsurface -e pauli -D mwpm -C toric simulation --p_bitflip 0.1 -n 10
{'no_error': 8}

For more information on command line interface:

$ python -m gsurface -h
usage: gsurface

This project is proudly funded by the *Unitary Fund <https://unitary.fund/>"_.

6 Chapter 2. Usage

https://raw.githubusercontent.com/watermarkhu/qsurface/master/images/toric-3d.gif
https://mybinder.org/v2/gh/watermarkhu/qsurface/master?filepath=examples.ipynb

CHAPTER
THREE

MODULES

3.1 Running simulations

Contains functions and classes to run and benchmark surface code simulations and visualizations. Use 1nitialize
to prepare a surface code and a decoder instance, which can be passed on to run and run_multiprocess to
simulate errors and to decode them with the decoder.

gsurface.main.initialize (size, Code, Decoder, enabled_errors=[], faulty_measurements==False,
plotting=False, **kwargs)
Initializes a code and a decoder.

The function makes sure that the correct class is used to instance the surface code and decoder based on the
arguments provided. A code instance must be initalized with enabled_errors by initialize after class
instance to make sure that plot parameters are properly loaded before loading the plotting items included in each
included error module, if plotting is enabled. See plot.Template2D and errors._template.
Plot for more information.

Parameters
* size (Union[Tuple[int, int], int]) — The size of the surface in xy or (X,y).
* Code (Union[module, str]) — Any surface code module or module name from codes.
* Decoder (Union[module, str])— Any decoder module or module name from decoders
e enabled_errors (List[Union[str, Sim]])— List of error modules from errors.
* faulty measurements (bool)—Enable faulty measurements (decode in a 3D lattice).
* plotting (bool)— Enable plotting for the surface code and/or decoder.

* kwargs — Keyword arguments are passed on to the chosen code, initialize, and the
chosen decoder.

Examples

To initialize a 6x6 toric code with the MWPM decoder and Pauli errors:

>>> initialize((6,6), "toric", "mwpm", enabled_errors=["pauli"], check_
—compatibility=True)

(<toric (6, 6) PerfectMeasurements>, <Minimum-Weight Perfect Matching decoder
— (Toric)>)

This decoder is compatible with the code.

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

Keyword arguments for the code and decoder classes can be included for further customization of class ini-
tialization. Note that default errors rates for error class initialization (see init_errors and errors.
_template.Sim) can also be provided as keyword arguments here.

>>> enabled_errors = ["pauli"]
>>> code_kwargs = {
"initial_states": (0,0),

"o_bitflip": 0.1,
}
>>> decoder_kwargs = {
"check_compatibility": True,
"weighted_union": False,
"weighted_growth": False,
}
>>> initialize((6,6), "toric", "unionfind", enabled_errors=enabled_errors, +*=*code_
—~kwargs, xxdecoder_kwargs)
This decoder is compatible with the code.

gsurface.main.run (code, decoder, error_rates={}, iterations=1, decode_initial=True, seed=None,

benchmark=None, mp_queue=None, mp_process=0, **kwargs)
Runs surface code simulation.

Single command function to run a surface code simulation for a number of iterations.
Parameters
* code (PerfectMeasurements)— A surface code instance (see initialize).
¢ decoder (Sim)— A decoder instance (see initialize).
* iterations (int)— Number of iterations to run.

* error_rates (dict) — Dictionary of error rates (see errors). Errors must have been
loaded during code class initialization by initializeor init_errors.

* decode_initial (bool) — Decode initial code configuration before applying loaded
errors. If random states are used for the data-qubits of the code at class initialization
(default behavior), an initial round of decoding is required and is enabled through the
decode_initial flag (default is enabled).

* seed (Optional[float]) - Float to use as the seed for the random number generator.

* benchmark (Optional[BenchmarkDecoder]) — Benchmarks decoder performance
and analytics if attached.

* kwargs — Keyword arguments are passed on to decode.

Examples

To simulate the toric code and simulate with bitflip error for 10 iterations and decode with the MWPM decoder:

>>> code, decoder = initialize((6,6), "toric", "mwpm", enabled_errors=["pauli"])
>>> run (code, decoder, iterations=10, error_rates = {"p_bitflip": 0.1})
{'"no_error': 8}

Benchmarked results are updated to the returned dictionary. See BenchmarkDecoder for the syntax and
information to setup benchmarking.

8 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

>>> code, decoder = initialize((6,6), "toric", "mwpm", enabled_errors=["pauli"])
>>> benchmarker = BenchmarkDecoder ({"decode":"duration"})

>>> run(code, decoder, iterations=10, error_rates = {"p_bitflip": 0.1},
—benchmark=benchmarker)

{'no_error': 8,

'benchmark': {'decoded': 10,

'iterations': 10,

'seed': 12447.413636559,
'durations': {'decode': {'mean': 0.00244155000000319,
'std': 0.002170364089572033}}}}

gsurface.main.run_multiprocess (code, decoder, error_rates={}, iterations=1, de-

code_initial=True, seed=None, processes=1, benchmark=None,

**kwargs)
Runs surface code simulation using multiple processes.

Using the standard module multiprocessing and its Process class, several processes are created that
each runs its on contained simulation using run. The code and decoder objects are copied such that each
process has its own instance. The total number of iterations are divided for the number of processes
indicated. If no processes parameter is supplied, the number of available threads is determined via
cpu_count and all threads are utilized.

If a BenchmarkDecoder object is attached to benchmark, Process copies the object for each separate
thread. Each instance of the the decoder thus have its own benchmark object. The results of the benchmark are
appended to a list and addded to the output.

See run for examples on running a simulation.
Parameters
e code (PerfectMeasurement s)— A surface code instance (see initialize).
¢ decoder (Sim)— A decoder instance (see initialize).
* error_rates (dict)— Dictionary for error rates (see errors).
e iterations (int)— Total number of iterations to run.

* decode_initial (bool) — Decode initial code configuration before applying loaded
eITors.

* seed (Optional[float])— Float to use as the seed for the random number generator.
* processes (int)— Number of processes to spawn.

* benchmark (Optional[BenchmarkDecoder]) — Benchmarks decoder performance
and analytics if attached.

* kwargs — Keyword arguments are passed on to every process of run.

class gsurface.main.BenchmarkDecoder (methods_to_benchmark={}, decoder=None,

**kwargs)
Benchmarks a decoder during simulation.

A benchmark of a decoder can be performed by attaching the current class to a decode. A benchmarker will
keep track of the number of simulated iterations and the number of successfull operations by the decoder in
self.data.

Secondly, a benchmark of the decoder’s class methods can be performed by the decorators supplied in the current
class, which have the form def decorator (self, func) :. The approach in the current benchmark class
allows for decorating any of the decoder’s class methods after it has been instanced. The benefit here is that
if no benchmark class is attached, no benchmarking will be performed. The class methods to benchmark must

3.1.

Running simulations 9

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

be supplied as a dictionary, where the keys are equivalent to the class method names, and the values are the
decorator names. Benchmarked values are stored as class attributes to the benchmark object.

There are two types of decorators, list decorators, which append some value to a dictionary of lists self.
lists, and value decorators, that saves or updates some value in self.values.

Parameters
* methods_to_benchmark (dict)— Decoder class methods to benchmark.
* decoder (Optional[Sim]) — Decoder object.
* seed - Logged seed of the simulation.

data
Simulation data.

lists
Benchmarked data by list decorators.

values
Benchmarked data by value decorators.

Examples

To keep track of the duration of each iteration of decoding, the decoder’s decode method can be decorated with
the duration decorator.

>>> code, decoder = initialize((6,6), "toric", "mwpmn", enabled_errors=["pauli"])
>>> benchmarker = BenchmarkDecoder ({"decode": "duration"}, decoder=decoder)

>>> code.random_errors (p_bitflip=0.1)

>>> decoder.decode ()

>>> benchmarker.lists

{'duration': {'decode': [0.000988199997664196411}}

The benchmark class can also be attached to run. The mean and standard deviations of the benchmarked values
are in that case updated to the output of run after running 1 ists_mean var.

>>> benchmarker = BenchmarkDecoder ({"decode":"duration"})

>>> run (code, decoder, iterations=10, error_rates = {"p_bitflip": 0.1},
—benchmark=benchmarker)

{'no_error': 8,

'benchmark': {'success_rate': [10, 107,

'seed': 12447.413636559,
'durations': {'decode': {'mean': 0.00244155000000319,
'std': 0.002170364089572033}}}1}

Number of calls to class methods can be counted by the count_calls decorator and stored to self.values. Values
in self.values can be saved to a list to, for example, log the value per decoding iteration by the value_to_list
decorator. Multiple decorators can be attached to a class method by a list of names in methods_to_benchmark.
The logged data are still available in the benchmarker class itself.

>>> benchmarker = BenchmarkDecoder ({

"decode": ["duration", "value_to_list"],

"correct_edge": "count_calls",

H)

>>> run(code, decoder, iterations=10, error_rates = {"p_bitflip": 0.1},

—benchmark=benchmarker)
{'no_error': 8,

(continues on next page)

10

Chapter 3. Modules

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

(continued from previous page)

'benchmark': {'success_rate': [10, 107,
'seed': '12447.413636559",
'duration': {'decode': {'mean': 0.001886229999945499,
'std': 0.0007808582199605158}1},
'count_calls': {'correct_edge': {'mean': 6.7, 'std': 1.4177446878757827}}}}
>>> benchmarker.lists
{'"duration': {'decode': [0.0030814000019745436,
0.0015807000017957762,
.0010604999988572672,
.0035383000031288248,
.0018329999984416645,
.001753099997586105,
.001290500000322936,
.0014110999982221983,
.0011783000009017996,
.00213539999822387471] 1},
count_calls': {'correct_edge': [10, 7, 5, 7, 6, 6, 7, 6, 5, 8]}}

- O O O O o o o o

Nested class methods can also be benchmarked, e.g. for find of Cluster, which has an alias in union-
find.sim.Toric.

>>> code, decoder = initialize((6,6), "toric", "unionfind", enabled_errors=["pauli
="1)

>>> benchmarker = BenchmarkDecoder ({"Cluster.find", "count_calls"})

>>> code.random_errors (p_bitflip=0.1)

>>> decoder.decode ()

>>> benchmarker.values

{'count_calls': {'find': 30}}

lists_mean_var (reset=True)
Get mean and stand deviation of values in self.lists.

Parameters reset (bool)—Resets allin self.1lists to empty lists.

value_to_list (func)
Appends all values in self.valuestolistsin self.lists.

duration (func)
Logs the duration of funcin self.lists.

count_calls (func)
Logs the number of calls to func in self.values.

3.2 Running a threshold simulation

gsurface.threshold.run_many (Code, Decoder, iterations=1, sizes=[], enabled_errors=[],
error_rates=[], Sfaulty_measurements=False, meth-
ods_to_benchmark={}, output=", mp_processes=1, recur-

sion_limit=100000, **kwargs)
Runs a series of simulations of varying sizes and error rates.

A series of simulations are run without plotting for all combinations of sizes and error_rates. The results
are returned as a Pandas DataFrame and saved to the working directory as a csv file. If an existing csv file with
the same file name is found, the existing file is loaded and new results are appended to the existing data. A
main.BenchmarkDecoder object is attached to each simulation to log the seed and other information.

3.2. Running a threshold simulation 11

https://docs.python.org/3/library/functions.html#bool

Qsurface

Parameters
* Code (Union[module, str]) — Any surface code module or module name from codes.
* Decoder (Union[module, str])— Any decoder module or module name from decoders
* iterations (int)— Number of iterations to run per configuration.

* sizes (List[Union[int, Tuple[int, int]]]) — The sizes of the surface configura-
tions.

e enabled_errors (List[Union[str, Sim]])— List of error modules from errors.

* error_rates (List[Dict]) — List of dictionaries for error rates per configuration (see
errors).

e faulty measurements (bool)—Enable faulty measurements (decode in a 3D lattice).
* methods_to_benchmark (dict)— Decoder class methods to benchmark.
* output (st r) — File name of outputted csv data. If set to “none”, no file will be saved.

* mp_processses — Number of processes to spawn. For a single process, run is used. For
multiple processes, run_multiprocess is utilized.

Examples

A series of simulations using the toric surface code and mwpm decoder can be easily setup. Benchmarking
can be performed by supplying the methods_to_benchmark argument of the BenchmarkDecoder class.
The function will initialize a benchmark object of each configuration and append all results as columns to the
returned dataframe.

>>> data = run_many (

"toric",

"mwpm",

iterations = 1000,

sizes = [8,12,16],

enabled_errors = ["pauli"],

error_rates = [{"p_bitflip: p} for p in [0.09, 0.1, 0.1177,

)
>>> print (data)
datetime decoded iterations no_error p_bitflip o
—seed size
0 04/11/2020 14:45:36 1000.0 1000.0 820.0 0.09 13163.013981_,
-~ 8.0
1 04/11/2020 14:45:45 1000.0 1000.0 743.0 0.10 13172.277886,,
-~ 8.0
2 04/11/2020 14:45:54 1000.0 1000.0 673.0 0.11 13181.090130,
-~ 8.0
3 04/11/2020 14:46:36 1000.0 1000.0 812.0 0.09 13190.191461_,
— 12.0
4 04/11/2020 14:47:18 1000.0 1000.0 768.0 0.10 13232.408302,
— 12.0
5 04/11/2020 14:48:16 1000.0 1000.0 629.0 0.11 13274.044268_,
— 12.0
6 04/11/2020 14:51:47 1000.0 1000.0 855.0 0.09 13332.153639_,
— 16.0
7 04/11/2020 14:55:15 1000.0 1000.0 754.0 0.10 13542.533067,,
— 16.0
8 04/11/2020 14:59:14 1000.0 1000.0 621.0 0.11 13751.082511,
16 0O

(continues on next page)

12 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Qsurface

(continued from previous page)

|

Return type Optional[DataFrame]
gsurface.threshold.read csv (file)
Reads a CSV file parses it as a Pandas DataFrame.
Return type DataFrame

class gsurface.threshold.ThresholdFit (modified_ansatz=False, p=0.09, 0.1, 0.11, A=- inf, 0,
inf, B=-inf, 0, inf, C=- inf, 0, inf, D=- 2, 1.6, 2,

nu=0.8, 0.95, 1.2, mu=0, 0.7, 3)
Fitter for code threshold with data obtained by ~.threshold. run.

Threshold fitting is performed using the equations described in [wang2003confinement]. The threshold is com-
puting the ground state of the Hamiltonian that described the phase transition or the Nishimori line in the
Random Bond Ising Model. The source provides two functions which are included in this fitting class, where
the modified_ansatz includes a nonuniversion additive correction to correct for finite size effects.

fit_data (data, column, **kwargs)
Fits for the code threshold.

Parameters
e data (DataFrame) — Data obtained via run.
¢ column (str)— The column of the DataFrame to fit for.
* kwargs — Keyword arguments are passed on the scipy.curve_fit.

plot_data (data, column, figure=None, rescaled=Fualse, scatter_kwargs={'s'": 10},
line_kwargs={'alpha': 0.5, 'ls": 'dashed’, 'lw': 1.5}, axis_attributes={'title’: 'Thresh-
old', 'xlabel’: 'Physical error rate', 'ylabel': 'Logical error rate'}, num_x_fit=1000,
**kwargs)

Plots the inputted data and the fit for the code threshold.

Parameters
¢ data (DataFrame) — Data obtained via run.
¢ column (str)— The column of the DataFrame to fit for.

e figure (Optional[Figure])—Ifa figure is attached, show is not called. Instead, the
figure is returned for futher manipulation.

* rescaled (bool)— Plots the data on a rescaled x axis where the fit is a single line.

* scatter_kwargs (dict) — Keyword arguments to pass on to the scatter for the
markers.

e line_kwargs (dict) — Keyword arguments to pass on to the ~matplotlib.pyplot.plot
for the line plot.

e axis_attributes (dict) - Attributes to set of the axis via axis.
set_{attribute} (value).

e num_x_fit (int)— Numpy of points to plot for the fit.

3.2. Running a threshold simulation 13

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Qsurface

3.3 Code elements

class gsurface.codes.elements.Qubit (loc, z=0, *args, **kwargs)
General type qubit object.

This class mainly serves as a superclass or template to other more useful qubit types, which have the apprioate
subclass attributes and subclass methods. For other types to to the ‘See Also’ section.

Parameters
* loc (Tuple[float, float])— Location of the qubit in coordinates.

* z (float) — Layer position of qubit. Different layers correspond to time instances of a
surface for faulty measurement simulations.

class gsurface.codes.elements.DataQubit (*args, **kwargs)
Data type qubit object.

The state of a data-qubit is determined by two Edge objects stored in the self.edges dictionary. Each of
the edges are part of a separate graph on the surface lattice.

edges
Dictionary of edges with the error type as key (e.g. "x" or "z").

self.edges = {“x”: Edge_x, “z”, Edge_z}
Type dict of Edge

state
A class property that calls to each of the edges stored at the self.edges attribute and returns all edge
states as a dictionary.

Type dict of bool

reinitialized
Indicator for a reinitialized (replaced) data qubit.

Type bool

class gsurface.codes.elements.AncillaQubit (*args, state_type='default’, **kwargs)
General type qubit object.

An ancilla-qubit is entangled to one or more DataQubit objects. The self.state_type attribute deter-
mines the state on which the measurement is applied. A single measurement is applied when the class property
self.state is called. The state of the last measurement is stored in self.measured_state for state
access without prompting a new measurement.

Parameters state_type (str, {"x", "z"}) - Type of ‘codes.eclements.Edge’ objects be-
longing to the DataQubit objects entangled to the current ancilla-qubit for stabilizer measure-
ments.

parity_qubits
All qubits in this dictionary are entangled to the current ancilla for stabilizer measurements.

Type dict of DataQubit

z_neighbors
Neighbor ancilla in the z direction that is an instance of the same qubit at a different time, required for
faulty measurements.

Type {codes.elements.AncillaQubit: PseudoEdge}

14 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Qsurface

state
Property that measures the parity of the qubits in self.parity_qubits.

Type bool

measured state
The result of the last parity measurement.

Type bool

syndrome
Whether the current ancilla is a syndrome.

Type bool

measurement_error
Whether an error occurred during the last measurement.

Type bool

Examples

The state of the entangled DataQubit is located at:

>>> AncillaQubit.parity_qubits[key].edges[AncillaQubit.state_type]
True

measure (p_bitflip_plag=0, p_bitflip_star=0, **kwargs)
Applies a parity measurement on the ancilla.

The functions loops over all the data qubits in self.parity_qgubits. For every edge associated with
the entangled state on the data qubit, the value of a parity boolean is flipped.

Parameters
* p_bitflip_plaq (float) - Bitflip rate for plaquette (XXXX) operators.
e p_bitflip star (float) - Bitflip rate for star (ZZZZ) operators.
Return type bool

class gsurface.codes.elements.Edge (qubit, state_type=", initial_state=None, **kwargs)
A state object belonging to a DataQubit object.

An edge cannot have open vertices and must be spanned by two nodes. In this case, the two nodes must be
AncillaQubit objects, and are stored in self.nodes.

Parameters
* qubit (DataQubit) — Parent qubit object.
* state_type (str) - Error type associated with the current edge.
* initial_state (Optional[bool]) — State of the object after initialization.

nodes
The vertices that spans the edge.

Type list of two ~.codes.elements.AncillaQubit™ objects

state
The current quantum state on the edge object.

Type bool

3.3. Code elements 15

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

add_node (node, **kwargs)

Adds a node to the edge’s self.nodes attribute.

class gsurface.codes.elements.PseudoQubit (*args, state_type='default’, **kwargs)

Boundary element, imitates codes.elements.AncillaQubit.

Edges needs to be spanned by two nodes. For data qubits on the boundary, one of its edges additionally requires

an ancilla qubit like node, which is the pseudo-qubit.

measure (p_bitflip_plaq=0, p_bitflip_star=0, **kwargs)

Applies a parity measurement on the ancilla.

The functions loops over all the data qubits in self.parity_qgubits. For every edge associated with
the entangled state on the data qubit, the value of a parity boolean is flipped.

Parameters
* p_bitflip plaq(float)- Bitflip rate for plaquette (XXXX) operators.
* p_bitflip_star (float) - Bitflip rate for star (ZZZZ) operators.

Return type bool

class gsurface.codes.elements.PseudoEdge (qubit, state_type="", initial_state=None,

**kwargs)
Vertical edge connecting time instances of ancilla-qubits, imitates codes.elements.Edge.

add_node (node, **kwargs)
Adds a node to the edge’s self.nodes attribute.

3.4 Template code

3.4.1 Simulation

class gsurface.codes._template.sim.PerfectMeasurements (size, **kwargs)

Simulation code class for perfect measurements.

The qubits of the code class are stored in a double dictionary, with the keys in the outer dictionary corresponding
to the qubit layer. For perfect measurements, there is a single layer. For faulty measurements, there are multiple
layers (and defaults to sel1f.size). In the nested dictionaries each qubit is stored by qubit.loc as key. A
qubit can thus be accessed by self.qubits[layer] [(x,v)].

The qubit and edge classes from Code elements can be replaced with inherited classes to store decoder dependent
attributes.

Parameters size (int or tuple)-— Size of the surface code in single dimension or two dimen-
sions (x,y).

ancilla_qubits
Nested dictionary of AncillaQubit objects.

Type dict of dict

data_qubits
Nested dictionary of DataQubit objects.

Type dict of dict

pseudo_qubits
Nested dictionary of PseudoQub1it objects.

Type dict of dict

16

Chapter 3. Modules

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Qsurface

errors
Dictionary of error modules with the module name as key. All error modules from Error types loaded in
self.errors will be applied during a simulation by random _errors ().

Type dict

logical_operators
Dictionary with lists of Edge objects that from a trivial loop over the surface and correspond to a logical
operator. The logical state of each operator can be obtained by the state of each Edge in the list.

Type dict of list

logical_state
Dictionary with the states corresponding to the logical operators in self.logical_operators.

Type dict of bool

no_error
Property for whether there is a logical error in the last iteration. The value for self.no_error is
updated after acallto self.logical_state.

Type bool

trivial ancillas
Property for whether all ancillas are trivial. Usefull for checking if decoding has been successfull.

Type bool

instance
Time stamp that is renewed every time random _errors is called. Helps with identifying a ‘round’ of
simulation when using class attributes.

Type float

initialize (*args, **kwargs)
Initializes all data objects of the code.

Builds the surface with init_surface, adds the logical operators with init_logical_ operator,
and loads error modules with init_errors. All keyword arguments from these methods can be used
for initialize.

abstract init_surface ()
Initiates the surface code.

abstract init_logical_operator ()
Initiates the logical operators.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters

e error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

e error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

3.4. Template code 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0.1 and erasure

to 0.03.

>>> code.init_errors
"pauli",
"erasure",

error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors (pauli, error_rates={"p_phaseflip": 0.05})

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits([z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
* data_qubit (DataQubit) — Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qgqubitslkey]

* edge (Optional[Edge])— The edge of the data-qubit to entangle to.

random_errors (apply_order=None, measure=True, **kwargs)
Applies all errors loaded in self.errors attribute to layer z.

The random error is applied for each loaded error module by calling random_error. If apply_order
is specified, the error modules are applied in order of the error names in the list. If no order is specified, the
errors are applied in a random order. Addionally, any error rate can set by supplying the rate as a keyword
argumente.g. p_bitflip = 0.1.

Parameters

* apply_order (Optional[List[str]]) — The order in which the error modules are
applied. Items in the list must equal keys in self.errors or the names of the loaded
error modules.

* measure (bool)— Measure ancilla qubits after errors have been simulated.

18 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Qsurface

class gsurface.codes._template.sim.FaultyMeasurements (size, *args, layers=None,

p_bitflip_plag=0,
p_bitflip_star=0, **kwargs)
Simulation code class for faulty measurements.

A 3D graph is initiated with layers amount of 2D surfaces from PerfectMeasurement stacked on
top of each other. The structure of the self.data_qubits, self.ancilla_qgubits and self.
pseudo_qubits dictionary attributes allows for the storage for various time instances of the same qubits in
the first nested layer. E.g. self.data_qubits[0][(0,0)] and self.data_qubits[1][(0,0)]
store the data-qubit at (0,0) at time instances O and 1, respectively. Consecutive instances of AncillaQubit
objects and PseudoQubit objects are connected in the 3D graph by PseudoEdge objects.

Parameters
* layers (Optional[int]) — Number of layers in 3D graph for faulty measurements.

* p bitflip plaq (float) — Default bitflip rate during measurements on plaquette op-
erators (XXXX).

* p_bitflip star (float)— Default bitflip rate during measurements on star operators
(Z72727).

simulate (**kwargs)
Simulate an iteration or errors and measurement.

On all but the final layer, the default or overriding error rates (via keyworded arguments) are ap-
plied. On the final layer, perfect measurements are applied by setting p_bitflip_plag=0 and
p_bitflip_star=0.

init_surface (**kwargs)
Initiates the surface code.

The 3D lattice is initialized by first building the ground layer. After that each consecutive layer is built and
pseudo-edges are added to connect the ancilla qubits of each layer.

add_vertical_edge (lower_ancilla, upper_ancilla, **kwargs)
Adds a PseudoEdge to connect two instances of an ancilla-qubit in time.

A surface code with faulty measurements must be decoded in 3D. Instances of the same ancilla qubits
in time must be connected with an edge. Here, lower_ancilla is an older instance of layer ‘z’, and
upper_ancilla is a newer instance of layer ‘z+1°.

Parameters
* lower_ancilla (AncillaQubit)— Older instance of ancilla-qubit.
e upper_ancilla (AncillaQubit)— Newer instance of ancilla-qubit.

random_errors (p_bitflip_plag=None, p_bitflip_star=None, **kwargs)
Performs a round of parity measurements on layer z with faulty measurements.

Parameters

e p_bitflip plaq(int or float, optional)- Probability of a bitflip during a
parity check measurement on plaquette operators (XXXX).

e p_bitflip_star(int or float, optional)-Probability of a bitflip during a
parity check measurement on star operators (ZZZZ).

random_errors_layer (**kwargs)
Applies a layer of random errors loaded in self.errors.

Parameters kwargs — Keyword arguments are passed on to random_errors.

3.4. Template code 19

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Qsurface

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits([z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

static entangle_ pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
e data_qubit (DataQubit)— Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]

* edge (Optionall[Edge]) — The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with

keywords corresponding to the default error rates of the associated error modules.
Parameters

e error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

* error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0. 1 and erasure

to 0.03.

>>> code.init_errors
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors(pauli, error_rates={"p_phaseflip": 0.05})

20

Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

abstract init_logical_operator ()
Initiates the logical operators.

initialize (*args, **kwargs)
Initializes all data objects of the code.

Builds the surface with init_surface, adds the logical operators with init_logical operator,

and loads error modules with init_errors. All keyword arguments from these methods can be used
for initialize.

random_measure_layer (**kwargs)
Measures a layer of ancillas.

If the measured state of the current ancilla is not equal to the measured state of the previous instance, the
current ancilla is a syndrome.

Parameters kwargs — Keyword arguments are passed on to get_state.

3.4.2 Plotting

class gsurface.codes._template.plot.PerfectMeasurements (*args, **kwargs)
Plotting template code class for perfect measurements.

figure
Figure object of the current code.

Type Figure
initialize (*args, **kwargs)

Initializes the code with a figure. Also takes keyword arguments for init_plot.

Since each error object delivers extra plot properties to the figure, which are dependent on the self.
params values in the figure itself, we must initialize in the following sequence.

* First load figure to load self.params instance of the P1otParams dataclass.
* Initialize lattice, error initialization must have figure properties
* Draw figure with plot elements from errors

random_errors (*args, **kwargs)
Applies all errors loaded in self.errors attribute to layer z.

The random error is applied for each loaded error module by calling random_error. If apply_order
is specified, the error modules are applied in order of the error names in the list. If no order is specified, the

errors are applied in a random order. Addionally, any error rate can set by supplying the rate as a keyword
argumente.g. p_bitflip = 0.1.

Parameters

* apply_order — The order in which the error modules are applied. Items in the list must
equal keys in self.errors or the names of the loaded error modules.

* measure — Measure ancilla qubits after errors have been simulated.

show_corrected (**kwargs)
Redraws the qubits and ancillas to show their states after decoding.

plot_data (iter_name=None, **kwargs)

Update plots of all data-qubits. A plot iteration is added if a iter_name is supplied. See
draw_figure.

3.4. Template code 21

Qsurface

plot_ancilla (iter_name=None, **kwargs)
Update plots of all ancilla-qubits. A plot iteration is added if a iter_name is supplied. See
draw_figure.

class Figure (code, *args, **kwargs)
Surface code plot for perfect measurements.

The inner figure class that plots the surface code based on the Qubit.loc and Qubit .z values on the
set of code.data_qubits, code.ancilla_qubits and code.pseudo_qubits. This allows
for a high amount of code inheritance.

An additional matplotlib.widgets.RadioButtons objectis added to the figure which allows for
the user to choose one of the loaded errors and apply the error directly to a qubit via _pick_handler.

Parameters
* code (PerfectMeasurements)— Surface code instance.
* kwargs — Keyword arguments are passed on to plot. TemplateZD.

error_methods
A dictionary of the various error methods loaded in the outer class.
Type dict

code_params
Additional plotting parameters loaded to the plot.PlotParams instance at self.params.

init_plot (**kwargs)
Plots all elements of the surface code onto the figure. Also takes keyword arguments for
init_legend.

An additional matplotlib.widgets.RadioButtons object is added to the figure which al-
lows for the user to choose one of the loaded errors and apply the error directly to a qubit via
_pick_handler. This object is added via the init_pIlot method to make sure that the er-
rors are already loaded in self.code.errors. The method for each loaded error is saved to
self.error_methods. See errors._template.Plot for more information.

init_1legend (legend_items=[], **kwargs)
Initializes the legend of the main axis of the figure. Also takes keyword arguments for 1egend.

The legend of the main axis self.main_ax consists of a series of Line2D objects. The qubit,
vertex and stars are always in the legend for a surface code plot. Any error from Error types loaded in
the code at code . errors in de outer class will add an extra element to the legend for differentiation
if an error occurs. The Line2D attributes are stored at error.Plot.legend_params of the
error module (see errors._template.Plot).
Parameters legend_items (list of Line2D, optional) — Additional elements to the leg-
end.

static change_properties (artist, prop_dict)
Changes the plot properties and draw the plot object or artist.

close ()
Closes the figure.

draw_figure (new_iter_name=None, output=True, carriage_return=False, **kwargs)
Draws the canvas and blocks code execution.

Draws the queued plot changes onto the canvas and calls for focus () which blocks the code execu-
tion and catches user input for history navigation.

If a new iteration is called by supplying a new_iter_name, we additionally check for future prop-
erty changes in the self.future_dict, and add these changes to the queue. Finally, all queued

22 Chapter 3. Modules

https://matplotlib.org/api/widgets_api.html#matplotlib.widgets.RadioButtons
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/api/widgets_api.html#matplotlib.widgets.RadioButtons
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D

Qsurface

property changes for the next iteration are applied by change properties.
Parameters
* new_iter name (Optional[str]) — Name of the new iteration. If no name is
supplied, no new iteration is called.
e output (bool) — Prints information to the console.
* carriage_return (bool)— Applies carriage return to remove last line printed.
See also:

focus (), change_properties ()

focus ()
Enables the blocking object, catches input for history navigation.

The BlockingKeylInput object is called which blocks the execution of the code. During this block,
the user input is received by the blocking object and return to the current method. From here, we can
manipulate the plot or move through the plot history and call focus () again when all changes in the
history have been drawn and blit.

key function

h show help

i show all iterations

d redraw current iteration

enter or right g0 to next iteration, enter iteration number
backspace or left | go to previous iteration

n g0 to newest iteration

0-9 input iteration number

When the method is active, the focus is on the figure. This will be indicated by a green circle in
the bottom right of the figure. When the focus is lost, the code execution is continued and the icon
is red. The change is icon color is performed by _set_figure_state (), which also hides the
interactive elements when the focus is lost.

property history_ at_newest

load_interactive_ backend ()
Configures the plotting backend.

If the Tkinter backend is enabled or can be enabled, the function returns True. For other backends
False is returned.
Return type bool

new_artist (artist, axis=None)
Adds a new artist to the axis.

Newly added artists must be hidden in the previous iteration. To make sure the history is properly
logged, the visibility of the art ist is set to False, and a new property of shown visibility is added
to the queue of the next iteration.
Parameters
* artist (Artist)— New plot artist to add to the axis.
* axis (Optional[Axes])— Axis to add the figure to.
Return type None

new_properties (artist, properties, saved_properties={}, **kwargs)
Parses a dictionary of property changes of a matplotlib artist.

New properties are supplied via properties. If any of the new properties is different from
its current value, this is seen as a property change. The old property value is stored in self.
history_dict[self.history_ iteration], and the new property value is stored at self.

3.4.

Template code 23

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

Qsurface

history_dict[self.history_iteration+1]. These new properties are queued for the
next interation. The queue is emptied by applying all changes when draw_figure is called. If the
same property changes 2+ times within the same iteration, the previous property change is removed
with next_prop.pop (key, None).

The saved_properties parameter is used when temporary property changes have been
applied by temporary_changes, in which the original properties are saved to self.
temporary_saved as the saved properties. Before a new iteration is drawn, the temporary
changes, which can be overwritten, are compared with the saved changes and the differences
in properties are saved to [self.history_dict[self.history_iter-1]] and self.
history_dict([self.history_iteration].

Some color values from different matplotlib objects are nested, some are list or tuple, and others may
be a numpy .ndarray. The nested methods get_nested () and get_nested_property ()
make sure that the return type is always a list.
Parameters

* artist (Artist)— Plot object whose properties are changed.

* properties (dict) — Plot properties to change.

* saved_properties (dict) — Override current properties and parse previous and

current history.

temporary_properties (artist, properties, **kwargs)
Applies temporary property changes to a matplotlib artist.

Only available on the newest iteration, as we cannot change what is already in the past. All values
in properties are immediately applied to artist. Since temporary changes can be overwrit-
ten within the same iteration, the first time a temporary property change is requested, the previous
value is saved to self.temporary_saved. When the iteration changes, the property differ-
ences of the previous and current iteration are recomputed and saved to self.history_dict in
_draw_from_history ().
Parameters
* artist (Artist)— Plot object whose properties are changed.
* properties (dict) — Plot properties to change.

add_ancilla_ qubit (loc, z=0, state_type="x', **kwargs)

Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)

Initializes a DataQubit and saved to self.data_qubits([z] [loc].
Parameters initial_states (Tuple[float, float]) — Initial state for the data-qubit.

Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type="x', **kwargs)

Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)

Entangles one DataQubit toa AncillaQubit for parity measurement.
Parameters
e data_qubit (DataQubit)— Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]

24

Chapter 3. Modules

https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any

Qsurface

* edge (Optional[Edge])— The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters

e error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

e error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0. 1 and erasure

to 0.03.

>>> code.init_errors
"pauli",
"erasure",

error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors(pauli, error_rates={"p_phaseflip": 0.05})

abstract init_logical_operator ()
Initiates the logical operators.

abstract init_surface ()
Initiates the surface code.

class gsurface.codes._template.plot.FaultyMeasurements (*args, figure3d=True,

**kwargs)
Plotting template code class for faulty measurements.

Inherits from codes._template.sim.FaultyMeasurements and codes._template.plot.
PerfectMeasurements. See documentation for these classes for more.

Dependent on the figure3d argument, either a 3D figure object is created that inherits from Template3D
and codes._template.plot.PerfectMeasurements.Figure, or the 2D codes._template.
plot.PerfectMeasurements.Figure is used.

Parameters

* args - Positional arguments are passed on to codes._template.sim.
FaultyMeasurements.

* figure3d (bool) — Enables plotting on a 3D lattice. Disable to plot layer-by-layer on a
2D lattice, which increases responsiveness.

* kwargs - Keyword arguments are passed on to codes._ template.sim.
FaultyMeasurements and the figure object.

3.4. Template code 25

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Qsurface

3.5 Code types

All surface code modules in this section inherit from the template surface code module, see Template code.

3.5.1 Toric code
Simulation

class gsurface.codes.toric.sim.PerfectMeasurements (size, **kwargs)

init_surface (z=0, **kwargs)
Initializes the toric surface code on layer z.

Parameters z (int or float, optional) - Layer of qubits, z=0 for perfect measure-
ments.

init_parity_ check (ancilla_qubit, **kwargs)
Initiates a parity check measurement.

For every ancilla qubit on (x, y), four neighboring data qubits are entangled for parity check measure-
ments. They are stored via the wind-directional keys.

Parameters ancilla_qubit (AncillaQubit)— Ancilla-qubit to initialize.

init_logical_operator (**kwargs)
Initiates the logical operators [x1, x2, z1, z2] of the toric code.

add_ancilla_ qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits[z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
* data_qubit (DataQubit) — Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]

* edge (Optional[Edge])— The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

26 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters

e error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

* error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0.1 and erasure
to 0.03.

>>> code.init_errors
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors (pauli, error_rates={"p_phaseflip": 0.05})

initialize (*args, **kwargs)
Initializes all data objects of the code.

Builds the surface with init_surface, adds the logical operators with init_logical_ operator,
and loads error modules with init errors. All keyword arguments from these methods can be used
for initialize.

random_errors (apply_order=None, measure=True, **kwargs)
Applies all errors loaded in self.errors attribute to layer z.

The random error is applied for each loaded error module by calling random_error. If apply_order
is specified, the error modules are applied in order of the error names in the list. If no order is specified, the
errors are applied in a random order. Addionally, any error rate can set by supplying the rate as a keyword
argumente.g. p_bitflip = 0.1.

Parameters

* apply_order (Optional[List[str]]) — The order in which the error modules are
applied. Items in the list must equal keys in self.errors or the names of the loaded
error modules.

* measure (bool) — Measure ancilla qubits after errors have been simulated.

class gsurface.codes.toric.sim.FaultyMeasurements (size, *args, layers=None,
p_bitflip_plaq=0, p_bitflip_star=0,
**kwargs)

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

3.5. Code types 27

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Qsurface

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits([z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.

Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

add_vertical_edge (lower_ancilla, upper_ancilla, **kwargs)
Adds a PseudoEdge to connect two instances of an ancilla-qubit in time.

A surface code with faulty measurements must be decoded in 3D. Instances of the same ancilla qubits
in time must be connected with an edge. Here, lower_ancilla is an older instance of layer ‘z’, and
upper_ancilla is a newer instance of layer ‘z+1’.

Parameters

* lower_ancilla (AncillaQubit)— Older instance of ancilla-qubit.
* upper_ancilla (AncillaQubit)— Newer instance of ancilla-qubit.

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.
Parameters
* data_qubit (DataQubit) — Control qubit.
* ancilla_qubit (AncillaQubit) - Controlled qubit.
* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]
* edge (Optional[Edge])— The edge of the data-qubit to entangle to.
init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters
* error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

e error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

28 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0.1 and erasure
to 0.03.

>>> code.init_errors (
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors (pauli, error_rates={"p_phaseflip": 0.05})

init_logical_operator (**kwargs)
Initiates the logical operators [x1, x2, z1, z2] of the toric code.

init_parity_ check (ancilla_qubit, **kwargs)
Initiates a parity check measurement.

For every ancilla qubit on (x,y), four neighboring data qubits are entangled for parity check measure-
ments. They are stored via the wind-directional keys.

Parameters ancilla_qubit (AncillaQubit)— Ancilla-qubit to initialize.

init_surface (**kwargs)
Initiates the surface code.

The 3D lattice is initialized by first building the ground layer. After that each consecutive layer is built and
pseudo-edges are added to connect the ancilla qubits of each layer.

initialize (*args, **kwargs)
Initializes all data objects of the code.

Builds the surface with init_surface, adds the logical operators with init_logical_ operator,
and loads error modules with init_errors. All keyword arguments from these methods can be used
for initialize.

random_errors (p_bitflip_plag=None, p_bitflip_star=None, **kwargs)
Performs a round of parity measurements on layer z with faulty measurements.

Parameters

e p_bitflip plaq(int or float, optional)-Probability of a bitflip during a
parity check measurement on plaquette operators (XXXX).

e p_bitflip star(int or float, optional)-Probability of a bitflip during a
parity check measurement on star operators (ZZZZ).

random_errors_layer (**kwargs)
Applies a layer of random errors loaded in self.errors.

Parameters kwargs — Keyword arguments are passed on to random_errors.

random_measure_layer (**kwargs)
Measures a layer of ancillas.

If the measured state of the current ancilla is not equal to the measured state of the previous instance, the
current ancilla is a syndrome.

Parameters kwargs — Keyword arguments are passed on to get_state.

3.5.

Code types 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Qsurface

simulate (**kwargs)
Simulate an iteration or errors and measurement.

On all but the final layer, the default or overriding error rates (via keyworded arguments) are ap-
plied. On the final layer, perfect measurements are applied by setting p_bitflip plag=0 and
p_bitflip_star=0.

Plotting

class gsurface.codes.toric.plot.PerfectMeasurements (*args, **kwargs)

class Figure (code, *args, **kwargs)

static change_properties (artist, prop_dict)
Changes the plot properties and draw the plot object or artist.

close ()
Closes the figure.

draw_figure (new_iter_name=None, output=True, carriage_return=False, **kwargs)
Draws the canvas and blocks code execution.

Draws the queued plot changes onto the canvas and calls for focus () which blocks the code execu-
tion and catches user input for history navigation.

If a new iteration is called by supplying a new_iter_name, we additionally check for future prop-
erty changes in the self.future_dict, and add these changes to the queue. Finally, all queued
property changes for the next iteration are applied by change properties.
Parameters
* new_iter name (Optional[str]) — Name of the new iteration. If no name is
supplied, no new iteration is called.

* output (bool) — Prints information to the console.

* carriage_return (bool) — Applies carriage return to remove last line printed.
See also:

focus (), change_properties ()

focus ()
Enables the blocking object, catches input for history navigation.

The BlockingKeylInput object is called which blocks the execution of the code. During this block,
the user input is received by the blocking object and return to the current method. From here, we can
manipulate the plot or move through the plot history and call focus () again when all changes in the
history have been drawn and blit.

key function

h show help

i show all iterations

d redraw current iteration

enter or right £o to next iteration, enter iteration number
backspace or left | go to previous iteration

n go to newest iteration

0-9 input iteration number

When the method is active, the focus is on the figure. This will be indicated by a green circle in
the bottom right of the figure. When the focus is lost, the code execution is continued and the icon

30 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

is red. The change is icon color is performed by _set_figure_state (), which also hides the
interactive elements when the focus is lost.

property history_ at_newest

init_Jlegend (legend_items=[], **kwargs)
Initializes the legend of the main axis of the figure. Also takes keyword arguments for legend.

The legend of the main axis self.main_ax consists of a series of Line2D objects. The qubit,
vertex and stars are always in the legend for a surface code plot. Any error from Error types loaded in
the code at code . errors in de outer class will add an extra element to the legend for differentiation
if an error occurs. The Line2D attributes are stored at error.Plot.legend_params of the
error module (see errors._template.Plot).
Parameters legend_items (list of Line2D, optional) — Additional elements to the leg-
end.

init_plot (**kwargs)
Plots all elements of the surface code onto the figure. Also takes keyword arguments for
init_legend.

An additional matplotlib.widgets.RadioButtons object is added to the figure which al-
lows for the user to choose one of the loaded errors and apply the error directly to a qubit via
_pick_handler. This object is added via the init_pIlot method to make sure that the er-
rors are already loaded in self.code.errors. The method for each loaded error is saved to
self.error_methods. See errors._template.Plot for more information.

load_interactive_backend ()
Configures the plotting backend.

If the Tkinter backend is enabled or can be enabled, the function returns True. For other backends
False is returned.
Return type bool

new_artist (artist, axis=None)
Adds a new artist to the axis.

Newly added artists must be hidden in the previous iteration. To make sure the history is properly
logged, the visibility of the art ist is set to False, and a new property of shown visibility is added
to the queue of the next iteration.
Parameters
* artist (Artist)— New plot artist to add to the axis.
* axis (Optional[Axes])— Axis to add the figure to.
Return type None

new_properties (artist, properties, saved_properties={}, **kwargs)
Parses a dictionary of property changes of a matplotlib artist.

New properties are supplied via properties. If any of the new properties is different from
its current value, this is seen as a property change. The old property value is stored in self.
history_dict[self.history_iteration], and the new property value is stored at self.
history_dict[self.history_iteration+1]. These new properties are queued for the
next interation. The queue is emptied by applying all changes when draw_figure is called. If the
same property changes 2+ times within the same iteration, the previous property change is removed
with next_prop.pop (key, None).

The saved_properties parameter is used when temporary property changes have been
applied by temporary_changes, in which the original properties are saved to self.
temporary_saved as the saved properties. Before a new iteration is drawn, the temporary
changes, which can be overwritten, are compared with the saved changes and the differences

3.5. Code types 31

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/widgets_api.html#matplotlib.widgets.RadioButtons
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

Qsurface

in properties are saved to [self.history_dict[self.history_iter-1]] and self.
history_dict([self.history_iteration].

Some color values from different matplotlib objects are nested, some are list or tuple, and others may
be a numpy .ndarray. The nested methods get_nested () and get_nested_property ()
make sure that the return type is always a list.
Parameters

* artist (Artist)— Plot object whose properties are changed.

* properties (dict) — Plot properties to change.

* saved_properties (dict) — Override current properties and parse previous and

current history.

temporary_ properties (artist, properties, **kwargs)
Applies temporary property changes to a matplotlib artist.

Only available on the newest iteration, as we cannot change what is already in the past. All values
in properties are immediately applied to artist. Since temporary changes can be overwrit-
ten within the same iteration, the first time a temporary property change is requested, the previous
value is saved to self.temporary_saved. When the iteration changes, the property differ-
ences of the previous and current iteration are recomputed and saved to self.history_dict in
_draw_from_history().
Parameters
* artist (Artist)— Plot object whose properties are changed.
* properties (dict) — Plot properties to change.

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits([z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
* data_qubit (DataQubit) — Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]

* edge (Optionall[Edge])— The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

32 Chapter 3. Modules

https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

Parameters

* error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

e error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0. 1 and erasure
to 0.03.

>>> code.init_errors (
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors(pauli, error_rates={"p_phaseflip": 0.05})

init_logical_operator (**kwargs)
Initiates the logical operators [x1, x2, z1, z2] of the toric code.

init_parity_ check (ancilla_qubit, **kwargs)
Initiates a parity check measurement.

For every ancilla qubit on (x,y), four neighboring data qubits are entangled for parity check measure-
ments. They are stored via the wind-directional keys.

Parameters ancilla_qubit (AncillaQubit)— Ancilla-qubit to initialize.

init_surface (z=0, **kwargs)
Initializes the toric surface code on layer z.

Parameters z (int or float, optional) - Layer of qubits, z=0 for perfect measure-
ments.

initialize (*args, **kwargs)
Initializes the code with a figure. Also takes keyword arguments for init_plot.

Since each error object delivers extra plot properties to the figure, which are dependent on the self.
params values in the figure itself, we must initialize in the following sequence.

* First load figure to load self.params instance of the P1otParams dataclass.
* Initialize lattice, error initialization must have figure properties
* Draw figure with plot elements from errors

plot_ancilla (iter_name=None, **kwargs)
Update plots of all ancilla-qubits. A plot iteration is added if a iter_name is supplied. See
draw_figure.

plot_data (iter_name=None, **kwargs)
Update plots of all data-qubits. A plot iteration is added if a iter_name is supplied. See
draw_figure.

3.5.

Code types 33

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Qsurface

random_errors (*args, **kwargs)
Applies all errors loaded in self.errors attribute to layer z.

The random error is applied for each loaded error module by calling random_error. If apply_order
is specified, the error modules are applied in order of the error names in the list. If no order is specified, the
errors are applied in a random order. Addionally, any error rate can set by supplying the rate as a keyword
argumente.g. p_bitflip = 0.1.

Parameters

* apply_order — The order in which the error modules are applied. Items in the list must
equal keys in self.errors or the names of the loaded error modules.

* measure — Measure ancilla qubits after errors have been simulated.

show_corrected (**kwargs)
Redraws the qubits and ancillas to show their states after decoding.

class gsurface.codes.toric.plot.FaultyMeasurements (*args, figure3d=True, **kwargs)
Plotting code class for faulty measurements.

Inherits from codes.toric.sim.FaultyMeasurements and codes.toric.plot.
PerfectMeasurements. See documentation for these classes for more.

Dependent on the figure3d argument, either a 3D figure object is created that inherits from Template3D
and codes.toric.plot.PerfectMeasurements.Figure, or the 2D codes.toric.plot.
PerfectMeasurements.Figure is used.

Parameters

* args — Positional arguments are passed on to codes.toric.sim.
FaultyMeasurements.

* figure3d (bool) — Enables plotting on a 3D lattice. Disable to plot layer-by-layer on a
2D lattice, which increases responsiveness.

* kwargs - Keyword arguments are passed on to codes.toric.sim.
FaultyMeasurement s and the figure object.

3.5.2 Planar code
Simulation

class gsurface.codes.planar.sim.PerfectMeasurements (size, **kwargs)

init_surface (z=0, **kwargs)
Initializes the planar surface code on layer z.

Parameters z (int or float, optional) - Layer of qubits, z=0 for perfect measure-
ments.

init_parity_check (ancilla_qubit, **kwargs)
Initiates a parity check measurement.

For every ancilla qubit on (x,y), four neighboring data qubits are entangled for parity check measure-
ments.

Parameters ancilla_qubit (AncillaQubit)— Ancilla qubit to initialize.

init_logical_operator (**kwargs)
Initiates the logical operators [x,z] of the planar code.

34 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Qsurface

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits([z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

static entangle_ pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
e data_qubit (DataQubit)— Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]

* edge (Optionall[Edge]) — The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters

e error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

* error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0. 1 and erasure
to 0.03.

>>> code.init_errors
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors(pauli, error_rates={"p_phaseflip": 0.05})

3.5. Code types 35

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

initialize (*args, **kwargs)
Initializes all data objects of the code.

Builds the surface with init surface, adds the logical operators with init_logical operator,
and loads error modules with init_errors. All keyword arguments from these methods can be used

for initialize.

random_errors (apply_order=None, measure=True, **kwargs)
Applies all errors loaded in self.errors attribute to layer z.

The random error is applied for each loaded error module by calling random_error. If apply_order
is specified, the error modules are applied in order of the error names in the list. If no order is specified, the
errors are applied in a random order. Addionally, any error rate can set by supplying the rate as a keyword
argument e.g. p_bitflip = 0.1.

Parameters

¢ apply order (Optional[List[str]]) — The order in which the error modules are
applied. Items in the list must equal keys in self.errors or the names of the loaded
error modules.

* measure (bool) — Measure ancilla qubits after errors have been simulated.

class gsurface.codes.planar.sim.FaultyMeasurements (size, *args, lay-
ers=None, p_bitflip_plaq=0,
p_bitflip_star=0, **kwargs)

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].
Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits([z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

Return type PseudoQubit

add_vertical_edge (lower_ancilla, upper_ancilla, **kwargs)
Adds a PseudoEdge to connect two instances of an ancilla-qubit in time.

A surface code with faulty measurements must be decoded in 3D. Instances of the same ancilla qubits
in time must be connected with an edge. Here, lower_ancilla is an older instance of layer ‘z’, and
upper_ancilla is a newer instance of layer ‘z+1’.

Parameters
* lower_ancilla (AncillaQubit)— Older instance of ancilla-qubit.
* upper_ancilla (AncillaQubit)— Newer instance of ancilla-qubit.

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
* data_qubit (DataQubit) — Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

36 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Qsurface

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qubits[key]

* edge (Optionall[Edge]) — The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters

* error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

* error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0. 1 and erasure
to 0.03.

>>> code.init_errors(
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors(pauli, error_rates={"p_phaseflip": 0.05})

init_logical_operator (**kwargs)
Initiates the logical operators [x,z] of the planar code.

init_parity_check (ancilla_qubit, **kwargs)
Initiates a parity check measurement.

For every ancilla qubit on (x,y), four neighboring data qubits are entangled for parity check measure-
ments.

Parameters ancilla_qubit (AncillaQubit)— Ancilla qubit to initialize.

init_surface (**kwargs)
Initiates the surface code.

The 3D lattice is initialized by first building the ground layer. After that each consecutive layer is built and
pseudo-edges are added to connect the ancilla qubits of each layer.

initialize (*args, **kwargs)
Initializes all data objects of the code.
Builds the surface with init_surface, adds the logical operators with init_logical_ operator,

and loads error modules with init_errors. All keyword arguments from these methods can be used
for initialize.

3.5.

Code types 37

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

random_errors (p_bitflip_plag=None, p_bitflip_star=None, **kwargs)
Performs a round of parity measurements on layer z with faulty measurements.

Parameters

e p_bitflip_plaq(int or float, optional)-Probability of a bitflip during a
parity check measurement on plaquette operators (XXXX).

e p_bitflip star(int or float, optional)-—Probability of a bitflip during a
parity check measurement on star operators (ZZZZ).

random_errors_layer (**kwargs)
Applies a layer of random errors loaded in self.errors.

Parameters kwargs — Keyword arguments are passed on to random_errors.

random_measure_layer (**kwargs)
Measures a layer of ancillas.

If the measured state of the current ancilla is not equal to the measured state of the previous instance, the
current ancilla is a syndrome.

Parameters kwargs — Keyword arguments are passed on to get_state.

simulate (**kwargs)
Simulate an iteration or errors and measurement.

On all but the final layer, the default or overriding error rates (via keyworded arguments) are ap-
plied. On the final layer, perfect measurements are applied by setting p_bitflip_plag=0 and
p_bitflip_star=0.

Plotting

class gsurface.codes.planar.plot.PerfectMeasurements (*args, **kwargs)

class Figure (code, *args, **kwargs)

static change_properties (artist, prop_dict)
Changes the plot properties and draw the plot object or artist.

close ()
Closes the figure.

draw_figure (new_iter_name=None, output=True, carriage_return=~False, **kwargs)
Draws the canvas and blocks code execution.

Draws the queued plot changes onto the canvas and calls for focus () which blocks the code execu-
tion and catches user input for history navigation.

If a new iteration is called by supplying a new_iter_name, we additionally check for future prop-
erty changes in the self.future_dict, and add these changes to the queue. Finally, all queued
property changes for the next iteration are applied by change properties.
Parameters
* new_iter_name (Optional[str]) — Name of the new iteration. If no name is
supplied, no new iteration is called.

* output (bool) — Prints information to the console.

* carriage_return (bool) — Applies carriage return to remove last line printed.
See also:

focus (), change_properties ()

38 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

focus ()
Enables the blocking object, catches input for history navigation.

The BlockingKeyInput object is called which blocks the execution of the code. During this block,
the user input is received by the blocking object and return to the current method. From here, we can
manipulate the plot or move through the plot history and call focus () again when all changes in the
history have been drawn and blit.

key function

h show help

i show all iterations

d redraw current iteration

enter or right go to next iteration, enter iteration number
backspace or left | go to previous iteration

n g0 to newest iteration

0-9 input iteration number

When the method is active, the focus is on the figure. This will be indicated by a green circle in
the bottom right of the figure. When the focus is lost, the code execution is continued and the icon
is red. The change is icon color is performed by _set_figure_state (), which also hides the
interactive elements when the focus is lost.

property history_at_newest

init_1legend (legend_items=[], **kwargs)
Initializes the legend of the main axis of the figure. Also takes keyword arguments for 1egend.

The legend of the main axis self.main_ax consists of a series of Line2D objects. The qubit,
vertex and stars are always in the legend for a surface code plot. Any error from Error types loaded in
the code at code . errors in de outer class will add an extra element to the legend for differentiation
if an error occurs. The Line2D attributes are stored at error.Plot.legend_params of the
error module (see errors._template.Plot).
Parameters legend_items (list of Line2D, optional) — Additional elements to the leg-
end.

init_plot (**kwargs)
Plots all elements of the surface code onto the figure. Also takes keyword arguments for
init_legend.

An additional matplotlib.widgets.RadioButtons object is added to the figure which al-
lows for the user to choose one of the loaded errors and apply the error directly to a qubit via
_pick_handler. This object is added via the init_plot method to make sure that the er-
rors are already loaded in self.code.errors. The method for each loaded error is saved to
self.error_methods. See errors._template.P]lot for more information.

load_interactive_backend()
Configures the plotting backend.

If the Tkinter backend is enabled or can be enabled, the function returns True. For other backends
False is returned.
Return type bool

new_artist (artist, axis=None)
Adds a new artist to the axis.

Newly added artists must be hidden in the previous iteration. To make sure the history is properly
logged, the visibility of the artist is set to False, and a new property of shown visibility is added
to the queue of the next iteration.

3.5. Code types 39

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/widgets_api.html#matplotlib.widgets.RadioButtons
https://docs.python.org/3/library/functions.html#bool

Qsurface

Parameters
* artist (Artist)— New plot artist to add to the axis.
* axis (Optional[Axes])— Axis to add the figure to.
Return type None

new_properties (artist, properties, saved_properties={}, **kwargs)
Parses a dictionary of property changes of a matplotlib artist.

New properties are supplied via properties. If any of the new properties is different from
its current value, this is seen as a property change. The old property value is stored in self.
history_dict[self.history_iteration],and the new property value is stored at self.
history_dict[self.history_iteration+1]. These new properties are queued for the
next interation. The queue is emptied by applying all changes when draw_figure is called. If the
same property changes 2+ times within the same iteration, the previous property change is removed
with next_prop.pop (key, None).

The saved_properties parameter is used when temporary property changes have been
applied by temporary_changes, in which the original properties are saved to self.
temporary_saved as the saved properties. Before a new iteration is drawn, the temporary
changes, which can be overwritten, are compared with the saved changes and the differences
in properties are saved to [self.history_dict([self.history_iter-1]] and self.
history_dict([self.history_iteration].

Some color values from different matplotlib objects are nested, some are list or tuple, and others may
be a numpy.ndarray. The nested methods get_nested () and get_nested_property ()
make sure that the return type is always a list.
Parameters

* artist (Artist)— Plot object whose properties are changed.

* properties (dict) — Plot properties to change.

* saved_properties (dict) — Override current properties and parse previous and

current history.

temporary_properties (artist, properties, **kwargs)
Applies temporary property changes to a matplotlib artist.

Only available on the newest iteration, as we cannot change what is already in the past. All values
in properties are immediately applied to artist. Since temporary changes can be overwrit-
ten within the same iteration, the first time a temporary property change is requested, the previous
value is saved to self.temporary_saved. When the iteration changes, the property differ-
ences of the previous and current iteration are recomputed and saved to self.history_dict in
_draw_from_history ().
Parameters
* artist (Artist)— Plot object whose properties are changed.
* properties (dict) — Plot properties to change.

add_ancilla_qubit (loc, z=0, state_type="x', **kwargs)
Initializes a AncillaQubit and savedto self.ancilla_qubits[z] [loc].

Return type AncillaQubit

add_data_qubit (loc, z=0, initial_states=None, None, **kwargs)
Initializes a DataQubit and saved to self.data_qubits[z] [loc].

Parameters initial_states (Tuple[float, float])— Initial state for the data-qubit.
Return type DataQubit

add_pseudo_qubit (loc, z=0, state_type='x', **kwargs)
Initializes a PseudoQubit and saved to self.pseudo_qubits[z] [loc].

40 Chapter 3. Modules

https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Qsurface

Return type PseudoQubit

static entangle_pair (data_qubit, ancilla_qubit, key, edge=None, **kwargs)
Entangles one DataQubit toa AncillaQubit for parity measurement.

Parameters
* data_qubit (DataQubit) — Control qubit.
* ancilla_qubit (AncillaQubit)— Controlled qubit.

* key (Any) — The entanglement is saved by adding the DataQubit to AncillaQubit
.parity_qgqubitslkey]

* edge (Optional[Edge])— The edge of the data-qubit to entangle to.

init_errors (*error_modules, error_rates={}, **kwargs)
Initializes error modules.

Any error module from Error types can loaded as either a string equivalent to the module file name or as
the module itself. The default error rates for all loaded error modules can be supplied as a dictionary with
keywords corresponding to the default error rates of the associated error modules.

Parameters

e error_modules (Union[str, Sim])— The error modules to load. May be a string or
an error module from Error types.

e error_rates (dict) — The default error rates for the loaded modules. Must be a
dictionary with probabilities with keywords corresponding to the default or overriding
error rates of the associated error modules.

Examples

Load Pauli error and Erasure error modules via string names. Set default bitflip rate to 0. 1 and erasure
to 0.03.

>>> code.init_errors (
"pauli",
"erasure",
error_rates={"p_bitflip": 0.1, "p_erasure": 0.03}

Load Pauli error module via module. Set default phaseflip rate to 0. 05.

>>> import .errors.pauli as pauli
>>> code.init_errors (pauli, error_rates={"p_phaseflip": 0.05})

init_logical_operator (**kwargs)
Initiates the logical operators [x,z] of the planar code.

init_parity_check (ancilla_qubit, **kwargs)
Initiates a parity check measurement.

For every ancilla qubit on (x,y), four neighboring data qubits are entangled for parity check measure-
ments.

Parameters ancilla_qubit (AncillaQubit)— Ancilla qubit to initialize.

init_surface (z=0, **kwargs)
Initializes the planar surface code on layer z.

3.5.

Code types 41

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

Parameters z (int or float, optional) - Layer of qubits, z=0 for perfect measure-
ments.
initialize (*args, **kwargs)
Initializes the code with a figure. Also takes keyword arguments for init_plot.

Since each error object delivers extra plot properties to the figure, which are dependent on the self.
params values in the figure itself, we must initialize in the following sequence.

* First load figure to load self.params instance of the P1otParams dataclass.
* Initialize lattice, error initialization must have figure properties
* Draw figure with plot elements from errors

plot_ancilla (iter_name=None, **kwargs)
Update plots of all ancilla-qubits. A plot iteration is added if a iter_name is supplied. See
draw_figure.

plot_data (iter_name=None, **kwargs)
Update plots of all data-qubits. A plot iteration is added if a iter_name is supplied. See
draw_figure.

random_errors (*args, **kwargs)
Applies all errors loaded in self.errors attribute to layer z.

The random error is applied for each loaded error module by calling random_error. If apply_order
is specified, the error modules are applied in order of the error names in the list. If no order is specified, the
errors are applied in a random order. Addionally, any error rate can set by supplying the rate as a keyword
argumente.g. p_bitflip = 0.1.

Parameters

* apply_order — The order in which the error modules are applied. Items in the list must
equal keys in self.errors or the names of the loaded error modules.

* measure — Measure ancilla qubits after errors have been simulated.

show_corrected (**kwargs)
Redraws the qubits and ancillas to show their states after decoding.

class gsurface.codes.planar.plot.FaultyMeasurements (*args, figure3d=True,

**kwargs)
Plotting code class for faulty measurements.

Inherits from codes.planar.sim.FaultyMeasurements and codes.planar.plot.
PerfectMeasurements. See documentation for these classes for more.

Dependent on the £igure3d argument, either a 3D figure object is created that inherits from Template3D
and codes.planar.plot.PerfectMeasurements.Figure, or the 2D codes.planar.plot.
PerfectMeasurements.Figure is used.

Parameters

* args — Positional arguments are passed on to codes.planar.sim.
FaultyMeasurements.

* figure3d (bool) — Enables plotting on a 3D lattice. Disable to plot layer-by-layer on a
2D lattice, which increases responsiveness.

* kwargs - Keyword arguments are passed on to codes.planar.sim.
FaultyMeasurements and the figure object.

42 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Qsurface

3.6 Template error

class gsurface.errors._template.Sim (code=None, **kwargs)
Template simulation class for errors.

The template simulation error class can be used as a parent class for error modules for surface code classes
that inherit from codes. template.sim.PerfectMeasurements or codes._template.sim.
FaultyMeasurements. The error of the module must be applied to each qubit separately using the abstract
method random error.

Parameters code (codes._template.sim.PerfectMeasurements) — Simulation sur-
face code class.

default_error_rates
The error rates that are applied at default.

Type dict of float

abstract random_error (qubit, **kwargs)
Applies the current error type to the qubit.

Parameters qubit (DataQubit)— Qubit on which the error is (conditionally) applied.
Return type None

class gsurface.errors._template.Plot (*args, **kwargs)
Template plot class for errors.

The template plotting error class can be used as a parent class for error modules for surface code classes
that inherit from codes._template.plot.PerfectMeasurementsor codes._template.plot.
FaultyMeasurements, which have a figure object attribute at code . figure. The error of the module
must be applied to each qubit separately using the abstract method random_error.

To change properties of the qubit (amatplotlib.patches.Circle object) if an error has been appied to
visualize the error. The template plot error class features an easy way to define the plot properties of an error.
First of all, each error must be defined in an error method that applies the error to the qubit. The template can
contain multiple error methods, all of which must be called by random_error. For all errors that we wish to
plot, we must add the names of the methods to self.error_methods. The plot properties are stored under
the same name in self.plot_params.

class CustomPlotError (Plot) :

error_methods = ["example_method"]
plot_params = {
"example_method": {"edgecolor": "color_edge", "facecolor": (0,0,0,0)}

}

def random_error (self, qubit):
if random.random < 0.5:
self.error_method (qubit)

def example_method(self, qubit):
apply error
pass

Note that the properties can either be literal or refer to some attribute of the P1otParams object stored at
self.code.figure.params (see load_params). Thus the name for the error methods must be unique
to any attribute in PlotParams.

3.6. Template error 43

https://docs.python.org/3/library/constants.html#None
https://matplotlib.org/api/_as_gen/matplotlib.patches.Circle.html#matplotlib.patches.Circle

Qsurface

Similarly, additional legend items can be added to the surface code plot self.code.figure. Each legend
item is a matplotlib.lines.line2D. The properties for each additional item in the legend is stored
at self.legend_params, and must also be unique to any PlotParams attribute. The legend titles for
each item is stored in self.legend_titles at the same keys. The additional legend items are added in

init_legend.

class CustomPlotError (Plot) :

by
}
legend_titles = {
"example_item": "Example error"

def random_error(self, qubit):
if random.random < 0.5:
self.error_method (qubit)

def example_method(self, qubit):
apply error
pass

error_methods = ["example_method"]
plot_params = {
"example_method": {"edgecolor": "color_edge", "facecolor": (0,0,0,0)}
}
legend_params = {
"example_item": {
"marker": "o",
"color": "color_edge",
"mfc": (1, 0, 0),
"mec": "g",

Finally, error methods can be also be added to the GUI of the surface code plot. For this, each error method
must a static method that is not dependant on the error class. Each error method to be added in the GUI must be

included in self.gui_methods. The GUI elements are included in init_plot.

class CustomPlotError (Plot) :

by
}
legend_titles = {
"example_item": "Example error"

def random_error (self, qubit):
if random.random < 0.5:

error_methods = ["example_ method"]
gui_methods = ["example _method"]
plot_params = {
"example_method": {"edgecolor": "color_edge", "facecolor": (0,0,0,0)}
}
legend_params = {
"example_item": {
"marker": "o",
"color": "color_edge",
"mfc": (1, 0, 0),
"mec": "g",

(continues on next page)

44

Chapter 3. Modules

Qsurface

(continued from previous page)

self.error_method (qubit)

@staticmethod

def example_method (qubit) :
apply error
pass

Parameters code (PerfectMeasurements) — Plotting surface code class.

error_methods
List of names of the error methods that changes the qubit surface code plot according to properties defined
inself.plot_params.

Type list

plot_params
Qubit plot properties to apply for each of the error methods in self.error_methods. Properties are
loaded to the P1otParams object stored at the self.code.figure.paramns attribute of the surface
code plot (see 1oad_params).

Type {method_name: properties}

legend params {method name
Legend items to add to the surface code plot. Properties are loaded to the P1 ot Params object stored at
the self.code. figure.params attribute of the surface code plot (see 1 oad_params), and used to
initialize a Line2D legend item.

Type Line2D properties}

legend_titles
Titles to display for the legend items in self.legend_params.

Type {method_name: legend_title}

gui_permanent
If enabled, the application of an error method on a qubit cannot be reversed within the same simulation
instance.

Type bool

gui_methods
List of names of the static error methods include in the surface plot GUIL

Type list

plot_error (error_name)
Decorates the error method with plotting features.

The method error_name is decorated with plot property changes defined in self.plot_params.
For each of the properties to change, the original property value of the artist is stored and requested as a
change at the end of the simulation instance.

See also:

None (), None ()

3.6. Template error 45

https://docs.python.org/3/library/stdtypes.html#list
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Qsurface

3.7 Error types

All error modules in this section inherit from the template error module, see Template error.

3.7.1 Pauli error
class gsurface.errors.pauli.Plot (*args, **kwargs)
Plot Pauli error class.

class gsurface.errors.pauli.Sim (*args, p_bitflip=0, p_phaseflip=0, **kwargs)
Simulation Pauli error class.

Parameters

* p_ bitflip(float or int, optional)- Default probability of X-errors or bitflip
eITorS.

* p_phaseflip (float or int, optional) — Default probability of Z-errors or
phaseflip errors.

static bitflip (qubit, **kwargs)
Applies a bitflip or Pauli X on qubit.

static bitphaseflip (qubit, **kwargs)
Applies a bitflip and phaseflip or ZX on qubit.

static phaseflip (qubit, **kwargs)
Applies a phaseflip or Pauli Z on qubit.

random_error (qubit, p_bitflip=0, p_phaseflip=0, **kwargs)
Applies a Pauli error, bitflip and/or phaseflip.

Parameters
* qubit (Qubit)— Qubit on which the error is (conditionally) applied.
* p_bitflip (float) - Overriding probability of X-errors or bitflip errors.
* p_phaseflip (float)— Overriding probability of Z-errors or phaseflip errors.

3.7.2 Erasure error
class gsurface.errors.erasure.Plot (*args, **kwargs)
Plot erasure error class.

class gsurface.errors.erasure.Sim (*args, p_erasure=0, initial_states=0, 0, **kwargs)
Simulation erasure error class.

Parameters
* p_erasure (float) — Default probability of erasure errors.
* initial_states (Tuple[float, float]) — Default state of the qubit after re-
initialization.
static erasure (qubit, instance=0, initial_states=0, 0, **kwargs)
Erases the qubit by resetting its attributes.

Parameters

e qubit (DataQubit) - Qubit to erase.

46 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Qsurface

e instance (f1loat)— Current simulation instance.
e initial_states (Tuple[float, float])— State of the qubit after re-initialization.

random_error (qubit, p_erasure=0, initial_states=None, **kwargs)
Applies an erasure error.

Parameters
* qubit — Qubit on which the error is (conditionally) applied.
* p_erasure (float)— Overriding probability of erasure errors.

* initial_states (Optional[Tuple[float, float]]) — Overriding state of the
qubit after re-initialization.

3.8 Template decoder

gsurface.decoders._template.write_config (config_dict, path)
Writes a configuration file to the path.

Parameters
* config_dict (dict)— Dictionary of configuration parameters. Can be nested.
* path (str)— Path to the file. Must include the desired extension.

gsurface.decoders._template.read_config (path, config_dict=None)
Reads an INI formatted configuration file and parses it to a nested dict

Each category in the INI file will be parsed as a separate nested dictionary. A default config_dict can be
provided with default values for the parameters. Parameters under the “main” section will be parsed in the main
dictionary. All data types will be converted by ast.literal_eval ().

Parameters

e path (str)— Path to the file. Must include the desired extension.

* config_dict (dict, optional)-— Nested dictionary of default parameters
Returns Parsed dictionary.

Return type dict

Examples

Let us look at the following example INI file.

[main]
paraml = hello

[section]
param2 = world
param3 = 0.1

This file will be parsed as follows

3.8. Template decoder 47

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

>>> read_config("config.ini")

{

"paraml": "hello",
"section": {
"param2": "world",

"param3": 0.1

gsurface.decoders._template.init_config (ini_file, write=False, **kwargs)
Reads the default and the user defined INI file.

First, the INI file stored in file directory is read and parsed. If there exists another INI file in the working
directory, the attributes defined there are read, parsed and overwrites and default values.

Parameters write (bool)— Writes the default configuration to the working direction of the user.
See also:
write_config (), read_config()

class gsurface.decoders._template.Sim (code, check_compatibility=False, **kwargs)
Decoder simulation class template.

Parameters

* code (PerfectMeasurements) - A PerfectMeasurements or
FaultyMeasurements class from the sim module of Code types.

* check_compatibility (bool) — Checks compatibility of the decoder with the code
class and loaded errors by check_compatibility.

compatibility measurements
Compatibility with perfect or faulty measurements.

Type dict

compatibility_ errors
Compatibility with the various error modules in Error types.

Type dict

check_compatibility ()
Checks compatibility of the decoder with the code class and loaded errors.

static get_neighbor (ancilla_qubit, key)
Returns the neighboring ancilla-qubit of ancilla_qgubit in the direction of key.

Return type Tuple[AncillaQubit, Edge]

get_neighbors (ancilla_qubit, loop=False, **kwargs)
Returns all neighboring ancillas, including other time instances.

Parameters loop (bool)— Include neighbors in time that are not chronologically next to each
other during decoding within the same instance.

correct_edge (ancilla_qubit, key, **kwargs)
Applies a correction.

The correction is applied to the data-qubit located at ancilla_qubit.parity_qubits[key].
More specifically, the correction is applied to the Edge object corresponding to the state_type of
ancilla_qubit.

Return type AncillaQubit

48 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

Qsurface

get_syndrome (find_pseudo=False)
Finds the syndrome of the code.

Parameters find_pseudo (bool, optional) — If enabled, the lists of syndromes re-
turned are not only AncillaQubit objects, buttuples of (ancilla, pseudo), where
pseudo is the closest PseudoQubit in the boundary of the code.

Return type Union[Tuple[List[AncillaQubit], List[AncillaQubit]],
Tuple[List[Tuple[AncillaQubit, PseudoQubitl]],
List[Tuple[AncillaQubit, PseudoQubitl]]]]

Returns
* list — Plaquette operator syndromes.
* list — Star operator syndromes.

abstract decode (*args, **kwargs)
Decodes the surface loaded at self . code after all ancilla-qubits have been measured.

class gsurface.decoders._template.Plot (*args, **kwargs)
Decoder plotting class template.

The plotting decoder class requires a surface code object that inherits from codes._template.plot.
PerfectMeasurements. The template decoder provides the plot_matching_edge method that is
called by correct_edge to visualize the matched edges on the lattice.

Parameters
* args — Positional and keyword arguments are passed on to Sim.
* kwargs — Positional and keyword arguments are passed on to Sim.

line_color_match
Plot properties for matched edges.

Type dict

line color_ normal
Plot properties for normal edges.

Type dict

matching lines
Dictionary of edges that have been added to the matching.

Type defaultdict(bool)

decode (*args, **kwargs)
Decodes the surface loaded at self . code after all ancilla-qubits have been measured.

correct_edge (qubit, key, **kwargs)
Applies a correction.

The correction is applied to the data-qubit located at ancilla_qubit.parity_qubits[key].
More specifically, the correction is applied to the Edge object corresponding to the state_type of
ancilla_qubit.

plot_matching edge (line=None)
Plots the matching edge.

Based on the colors defined in self.line_color_match, if a Line2D object is supplied, the color
of the edge is changed. A future change back to its original color is immediately saved in figure.
future_dict.

3.8. Template decoder 49

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D

Qsurface

check_compatibility ()
Checks compatibility of the decoder with the code class and loaded errors.

static get_neighbor (ancilla_qubit, key)
Returns the neighboring ancilla-qubit of ancilla_qubit in the direction of key.

Return type Tuple[AncillaQubit, Edge]

get_neighbors (ancilla_qubit, loop=False, **kwargs)
Returns all neighboring ancillas, including other time instances.

Parameters loop (bool)— Include neighbors in time that are not chronologically next to each
other during decoding within the same instance.

get_syndrome (find_pseudo=False)
Finds the syndrome of the code.

Parameters find_pseudo (bool, optional) — If enabled, the lists of syndromes re-
turned are not only AncillaQubit objects, buttuples of (ancilla, pseudo), where
pseudo is the closest PseudoQubit in the boundary of the code.

Return type Union[Tuple[List[AncillaQubit], List[AncillaQubit]],
Tuple[List[Tuple[AncillaQubit, PseudoQubitl]],
List[Tuple[AncillaQubit, PseudoQubit]]]]

Returns
* list — Plaquette operator syndromes.

* [ist — Star operator syndromes.

3.9 Decoders

All decoder modules in this section inherit from the template decoder module, see Template decoder.

3.9.1 mwpm

The Minimum-Weight Perfect Matching decoder.

Information

The most popular decoder for surface codes is the Minimum-Weight Perfect Matching (MWPM) decoder. It performs
near-optimal for a pauli noise model [dennis2002] on a standard toric code with a threshold of py, = 10.3%, and for
a phenomenological noise model (including faulty measurements) [wang2003], which includes faulty measurements,
with py, = 2.9%. The main idea is to approximate the error with the minimum-weight error configuration compatible
with the syndrome. The minimum-weight configuration is found by constructing a fully connected graph between the
nodes of the syndrome, which leads to a cubic worst-case time complexity [kolmogorov2009].

The decoder defaults to using a Python implementation of MWPM by networkx.algorithms.matching.
max_weight_matching. This implementation is however quite slow. Optionally, Blossom V [kolmogorov2009],
a C++ algorithm, can be used to increase the speed of the decoder. Since this software has its own license, it is not bun-
deled with gsurface. A script is provided to download and compile the latest release of BlossomV in get__blossomv.
The interface of the C++ code and Python is taken from Fault Tolerant Simulations.

gsurface.decoders.mwpm.get_blossomv (accept=False)
Downloads and compiles the BlossomV algorithm, which is distributed under the following license:

50 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://pub.ist.ac.at/~vnk/software.html
https://github.com/naominickerson/fault_tolerance_simulations

Qsurface

License:

Copyright 2008-2009 UCL Business PLC, Author Vladimir Kolmogorov (vnk@ist.ac.at)

This software can be used for evaluation and non-commercial research purposes,,
—only. Commercial use is prohibited.

Public redistribution of the code or its derivatives is prohibited.

If you use this software for research purposes, you should cite the following,
—paper in any resulting publication:

Vladimir Kolmogorov. "Blossom V: A new implementation of a minimum cost,
—perfect matching algorithm."
In Mathematical Programming Computation (MPC), July 2009, 1(1):43-67.

For commercial use of the software not covered by this agreement, you may obtain_
—~a licence from

the copyright holders UCL Business via their licensing site: www.e-lucid.com/i/
—software/optimisation_software/BlossomV.html.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Simulation

class gsurface.decoders.mwpm.sim.Toric (code, check_compatibility=False, **kwargs)

Minimum-Weight Perfect Matching decoder for the toric lattice.
Parameters

* args — Positional and keyword arguments are passed on to decoders._template.
Sim.
* kwargs — Positional and keyword arguments are passed on to decoders._template.
Sim.
decode (**kwargs)

Decodes the surface loaded at self . code after all ancilla-qubits have been measured.

match_syndromes (syndromes, use_blossomv=~False, **kwargs)
Decodes a list of syndromes of the same type.

A graph is constructed with the syndromes in syndromes as nodes and the distances between each
of the syndromes as the edges. The distances are dependent on the boundary conditions of the code
and is calculated by get_qubit_distances. A minimum-weight matching is then found by either
match_networkx or match_blossomv.

Parameters

e syndromes (List[AncillaQubit]) - Syndromes of the code.

3.9. Decoders 51

https://docs.python.org/3/library/typing.html#typing.List

Qsurface

* use_blossomv (bool) — Use external C++ Blossom V library for minimum-weight
matching. Needs to be downloaded and compiled by calling get_blossomv.

Returns Minimum-weight matched ancilla-qubits.
Return type list of AncillaQubit

correct_matching (syndromes, matching, **kwargs)
Applies the matchings as a correction to the code.

static match_networkx (edges, maxcardinality, **kwargs)
Finds the minimum-weight matching of a list of edges using networkx.algorithms.matching.
max_weight_matching.

Parameters

* edges ([[nodeA, nodeB, distance (nodeA,nodeB)],..]) — A graph de-
fined by a list of edges.

* maxcardinality (float) - See networkx.algorithms.matching.
max_weight_matching.

Returns Minimum weight matching in the form of [[nodeA, nodeB]...].
Return type list

static match_blossomv (edges, num_nodes=0, **kwargs)
Finds the minimum-weight matching of a list of edges using Blossom V.

Parameters edges ([[nodeA, nodeB, distance (nodeA,nodeB)],..J]) - A
graph defined by a list of edges.

Returns Minimum weight matching in the form of [[nodeA, nodeB],..].
Return type list

static get_qubit_distances (qubits, size)
Computes the distance between a list of qubits.

On a toric lattice, the shortest distance between two qubits may be one in four directions due to the periodic
boundary conditions. The size parameters indicates the length in both x and y directions to find the
shortest distance in all directions.

check_compatibility ()
Checks compatibility of the decoder with the code class and loaded errors.

correct_edge (ancilla_qubit, key, **kwargs)
Applies a correction.

The correction is applied to the data-qubit located at ancilla_qubit.parity_qubits[key].
More specifically, the correction is applied to the Edge object corresponding to the state_type of
ancilla_qubit.

Return type AncillaQubit

static get_neighbor (ancilla_qubit, key)
Returns the neighboring ancilla-qubit of ancilla_qubit in the direction of key.

Return type Tuple[AncillaQubit, Edge]

get_neighbors (ancilla_qubit, loop=False, **kwargs)
Returns all neighboring ancillas, including other time instances.

Parameters loop (bool) - Include neighbors in time that are not chronologically next to each
other during decoding within the same instance.

52 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#bool
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://docs.python.org/3/library/functions.html#float
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://docs.python.org/3/library/stdtypes.html#list
https://pub.ist.ac.at/~vnk/software.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

Qsurface

get_syndrome (find_pseudo=False)
Finds the syndrome of the code.

Parameters find_pseudo (bool, optional) — If enabled, the lists of syndromes re-
turned are not only AncillaQubit objects, buttuples of (ancilla, pseudo), where
pseudo is the closest PseudoQubit in the boundary of the code.

Return type Union[Tuple[List[AncillaQubit], List[AncillaQubit]],
Tuple[List[Tuple[AncillaQubit, PseudoQubitl]],
List[Tuple[AncillaQubit, PseudoQubitl]]]]

Returns
* list — Plaquette operator syndromes.
* list — Star operator syndromes.

class gsurface.decoders.mwpm.sim.Planar (code, check_compatibility="False, **kwargs)
Minimum-Weight Perfect Matching decoder for the planar lattice.

Additionally to all edges, virtual qubits are added to the boundary, which connect to their main qubits.Edges
between all virtual qubits are added with weight zero.

decode (**kwargs)
Decodes the surface loaded at self . code after all ancilla-qubits have been measured.

correct_matching (syndromes, matching)
Applies the matchings as a correction to the code.

static get_qubit_distances (qubits, *args)
Computes the distance between a list of qubits.

On a planar lattice, any qubit can be paired with the boundary, which is inhabited by PseudoQubit
objects. The graph of syndromes that supports minimum-weight matching algorithms must be fully con-
nected, with each syndrome connecting additionally to its boundary pseudo-qubit, and a fully connected
graph between all pseudo-qubits with weight 0.

check_compatibility ()
Checks compatibility of the decoder with the code class and loaded errors.

correct_edge (ancilla_qubit, key, **kwargs)
Applies a correction.

The correction is applied to the data-qubit located at ancilla_qubit.parity_qubits[key].
More specifically, the correction is applied to the Edge object corresponding to the state_type of
ancilla_qubit.

Return type AncillaQubit

static get_neighbor (ancilla_qubit, key)
Returns the neighboring ancilla-qubit of ancilla_qgubit in the direction of key.

Return type Tuple[AncillaQubit, Edge]

get_neighbors (ancilla_qubit, loop=False, **kwargs)
Returns all neighboring ancillas, including other time instances.

Parameters loop (bool)—Include neighbors in time that are not chronologically next to each
other during decoding within the same instance.

get_syndrome (find_pseudo=False)
Finds the syndrome of the code.

3.9. Decoders 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

Qsurface

Parameters £ind_pseudo (bool, optional) — If enabled, the lists of syndromes re-
turned are not only AncillaQubit objects, but tuples of (ancilla, pseudo), where
pseudo is the closest PseudoQubit in the boundary of the code.

Return type Union[Tuple[List[AncillaQubit], List[AncillaQubit]],
Tuple[List[Tuple[AncillaQubit, PseudoQubitl]],
List[Tuple[AncillaQubit, PseudoQubit]]]]

Returns
* list — Plaquette operator syndromes.
* list — Star operator syndromes.

static match_blossomv (edges, num_nodes=0, **kwargs)
Finds the minimum-weight matching of a list of edges using Blossom V.

Parameters edges (/[[nodeA, nodeB, distance (nodeA,nodeB)],..]) — A
graph defined by a list of edges.

Returns Minimum weight matching in the form of [[nodeA, nodeB],..].
Return type list

static match_networkx (edges, maxcardinality, **kwargs)
Finds the minimum-weight matching of a list of edges using networkx.algorithms.matching.
max_weight_matching.

Parameters

* edges ([[nodeA, nodeB, distance (nodeA,nodeB)],..]) — A graph de-
fined by a list of edges.

* maxcardinality (float) - See networkx.algorithms.matching.
max_weight_matching.

Returns Minimum weight matching in the form of [[nodeA, nodeB]...].
Return type list

match_syndromes (syndromes, use_blossomv=~False, **kwargs)
Decodes a list of syndromes of the same type.

A graph is constructed with the syndromes in syndromes as nodes and the distances between each
of the syndromes as the edges. The distances are dependent on the boundary conditions of the code
and is calculated by get_qubit_distances. A minimum-weight matching is then found by either
match_networkx or match_blossomv.

Parameters
e syndromes (List[AncillaQubit]) - Syndromes of the code.

* use_blossomv (bool) — Use external C++ Blossom V library for minimum-weight
matching. Needs to be downloaded and compiled by calling get_blossomv.

Returns Minimum-weight matched ancilla-qubits.

Return type list of AncillaQubit

54 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pub.ist.ac.at/~vnk/software.html
https://docs.python.org/3/library/stdtypes.html#list
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://docs.python.org/3/library/functions.html#float
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.max_weight_matching.html#networkx.algorithms.matching.max_weight_matching
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool

Qsurface

Plotting

class gsurface.decoders.mwpm.plot.Toric (*args, **kwargs)
Plot MWPM decoder for the toric code.

Parameters

* args — Positional and keyword arguments are passed on to decoders._template.
Plot and decoders.mwpm.sim. Toric.

* kwargs — Positional and keyword arguments are passed on to decoders._ template.
Plot and decoders.mwpm. sim.Toric.

class gsurface.decoders.mwpm.plot.Planar (*args, **kwargs)
Plot MWPM decoder for the planar code.

Parameters

* args — Positional and keyword arguments are passed on to Toric and decoders.
mwpm.sim.Planar.

* kwargs — Positional and keyword arguments are passed on to Toric and decoders.
mwpm.sim.Planar.

3.9.2 unionfind

The Union-Find decoder.

Information

The Union-Find decoder [delfosse2017almost] maps each element of the syndrome o to an ancilla v in a non-connected
graph defined on the code lattice. From this starting point, it grows clusters around these ancillas by repeatedly adding
a layer of edges and ancillas to existing clusters, until all clusters have an even number of non-trivial syndrome ancillas.
Then, it selects a spanning tree F' for each cluster.

The leaves of each spanning tree are conditionally peeled in a tail-recursive breadth-first search until all non-trivial
syndrome ancillas are paired and linked by a path within F', which is the correcting operator C [delfosse2017linear].
The strategy for constructing the clusters turns out to have a strong effect on performance. For instance, the threshold
for bitflip noise of a decoder that grows the clusters following a random order is 9.2% [delfosse2017almost], while
if the clusters are grown in order of cluster size, which we call Weighted Growth, the threshold increases to 9.9%
[delfosse2017almost].

The complexity of the Union-Find decoder is driven by the merging of the clusters. For this, the algorithm uses the
Union-Find or disjoint-set data structure [tarjan1975efficiency]. This data structure contains a set of elements, in this
case ancillas on the lattice. The set of elements is represented by a two-level tree. At the root of the tree sits one
element chosen arbitrarily; the rest of the elements are linked to the root element. The structure admits two functions:
Find and Union. Given v an element from the structure, the function Find(v) returns the root element of the tree.
This is is used to identify the cluster to which v belongs. The second function is Union(u,v), this function merges
the sets associated with elements v and v. This requires pointing all the elements of one of the sets to the root of the
other. In order to minimize the number of operations the root of the set with the larger number of elements is chosen
as root for the merged set, this is called Weighted Union. In this context, Union is used when the growth of a cluster
requires adding a vertex that belongs to another.

class gsurface.decoders.unionfind.elements.Cluster (index, instance, **kwargs)
CLuster of AncillaQubit objects.

A disjoint set, or cluster, of ancilla-qubits. The size of the cluster is equal to the number of qubits in the cluster.
The parity of the cluster is equal to the number of non-trivial ancilla-qubits in the cluster.

3.9. Decoders 55

Qsurface

A cluster can be joined with another by union. Joined clusters are stored in the union-find data structure
[tarjan1975efficiency]. The representative element or root cluster is returned by find.

Parameters
e index (int) — Indicator index number.
* instance (f1loat)— The epoch timestamp of the simulation.

size
Size of this cluster based on the number contained ancillas.

Type int

support
Growth state of the cluster.

Type int

parity
Parity of this cluster based on the number non-trivial ancilla-qubits.

Type int

parent
The parent cluster of the current cluster.

Type Cluster

bound, new_bound
The current and next boundary of the current cluster.

Type list, [[inner_ancilla, edge, outer_ancillal,...]

bucket
The bucket number the current ancilla belongs to.

Type int

on_bound
Whether this cluster is connected to the boundary.

Type bool

add_ancilla (ancilla)
Adds an ancilla to a cluster.

find (**kwargs)
Finds the representative root cluster.

The function is applied recursively until the root element of the union-find tree is encountered. The repre-
sentative root element is returned. Path compression is applied to reduce the depth of the tree.

Examples

For joined clusters in the union-find data structure:

cl0
/ \
cll cl2
/
cl2

the representative element can be found by

56 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Qsurface

>>> cl2.find ()
cl0

Return type Cluster

union (cluster, **kwargs)
Merges two clusters.

The cluster is made a child of the current cluster. The joined size and parity attributes are updated.
Parameters cluster (Cluster)— The cluster to merge with self.

Examples

For two clusters c10 and c11, c10.union (cl1) results in the following tree:

cl0
/
cll

Simulation

The following description also applies to unionfind.sim.Planar.

class gsurface.decoders.unionfind.sim.Toric (*args, **kwargs)
Union-Find decoder for the toric lattice.

In this implementation, cluster properties are not stored at the root of the tree. Instead, ancillas are collected
within C1uster objects, which contain the union and find methods.

Default values for the following parameters can be supplied via a decoders.ini file under the section of
[unionfind].

The cluster and peeled attributes are monkey patched to the AncillaQubit object to assist the identifi-
cation of its parent cluster and to assist peeling. The forest attribute is monkey-patched to AncillaQubit
and Edge if a dynamic forest is not maintained to assist with the construction of the acyclic forest after cluster

growth.
Parameters
* weighted_growth (bool, optional) — Enables weighted growth via bucket
growth. Default is true. See grow_clusters.
* weighted_union (bool, optional)- Enables weighted union, Default is true. See
union_bucket.
* dynamic_forest (bool, optional) — Enables dynamically mainted forests. De-
fault is true.
* print_steps (bool, optional) — Prints additional decoding information. Default
is false.
* kwargs — Keyword arguments are forwarded to Sim.
support

Dictionary of growth states of all edges in the code.

3.9. Decoders 57

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

value | state
2 fully grown
1 half grown
0 none
-1 removed by cycle or peel
-2 added to matching
Type dict
buckets

Ordered dictionary (by index) for bucket growth (implementation of weighted growth). See
grow_clusters.

Type defaultdict

bucket _max_ filled
The hightest occupied bucket. Allows for break from bucket loop.

Type int

clusters
List of all clusters at initialization.

Type list

cluster_ index
Index value for cluster differentiation.

Type int

decode (**kwargs)
Decodes the code using the Union-Find algorithm.

Decoding process can be subdivided into 3 sections:
1. Finding the initial clusters.
2. Growing and merging these clusters.
3. Peeling the clusters using the Peeling algorithm.

Parameters kwargs - Keyword arguments are passed on to find clusters,
grow_clustersand peel_clusters.

get_cluster (ancilla)
Returns the cluster to which ancilla belongs to.

If ancilla has no cluster or the cluster is not from the current simulation, none is returned. Otherwise,
the root element of the cluster-tree is found, updated to ancilla.cluster and returned.

Parameters ancilla (AncillaQubit) - The ancilla for which the cluster is to be found.
Return type Optional[Cluster]

cluster_add_ancilla (cluster, ancilla, parent=None, **kwargs)
Recursively adds erased edges to cluster and finds the new boundary.

For a given ancilla, this function finds the neighboring edges and ancillas that are in the the currunt
cluster. If the newly found edge is erased, the edge and the corresponding ancilla will be added to the
cluster, and the function applied recursively on the new ancilla. Otherwise, the neighbor is added to the
new boundary self.new_bound.

58 Chapter 3. Modules

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

Parameters
e cluster (Cluster)— Current active cluster

* ancilla(AncillaQubit)— Ancillafrom which the connected erased edges or bound-
ary are searched.

find_clusters (**kwargs)
Initializes the clusters on the lattice.

For every non-trivial ancilla on the lattice, a C1uster is initiated. If any set of ancillas are connected
by some set of erased qubits, all connected ancillas are found by cluster_add_ancilla and asingle
cluster is initiated for the set.

The cluster is then placed into a bucket based on its size and parity by place bucket. See
grow_clusters for more information on buckets.

grow_clusters (**kwargs)
Grows odd-parity clusters outward for union with others until all clusters are even.

Lists of odd-parity clusters are maintained at se1f . buckets. Starting from bucket 0, odd-parity clusters
are popped from the bucket by ‘grow_bucket and grown at the boundary by grow_boundary by adding
1 for every boundary edge in cluster.boundin self.support. Grown clusters are then placed in
a new bucket by place_bucket based on its size if it has odd parity.

Edges are fully added to the cluster per two growth iterations. Since a cluster with half-grown edges at
the boundary has the same size (number of ancillas) as before growth, but is non-arguably bigger, the
degeneracy in cluster size is differentiated by cluster. support. When an union occurs between two
clusters during growth, if the merged cluster is odd, it is placed in a new bucket. Thus the real bucket
number is saved at the cluster locally as cluster.bucket. These two checks are performed before a
cluster is grown in grow_bucket.

The chronology of events per bucket must be the following:
1. Grow all clusters in the bucket if checks passed.
* Add all odd-parity clusters after growth to place_list.
* Add all merging clusters to union_list.
2. Merge all clusters in union_list
* Add odd-parity clusters after union to place_list.
3. Place all clusters in place_list in new bucket if parity is odd.

For clusters with cluster. support==1 or with half-grown edges at the boundary, the new bound-
ary at clusters.new_bound consists of the same half-grown edges. For clusters with cluster.
support==0, the new boundary is found by cluster_add_ancilla.

If weighted_growth is disabled, odd-parity clusters are always placed in self.buckets [0]. The same
checks for cluster.bucket and cluster. support are applied to ensure clusters growth is valid.

grow_bucket (bucket, bucket_i, **kwargs)
Grows the clusters which are contained in the current bucket.

See grow_clusters for more information.
Parameters
* bucket (List[Cluster])— List of clusters to be grown.
e bucket_i (int) - Current bucket number.

Return type Tuple[List, List]

. Decoders 59

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Qsurface

Returns
* list — List of potential mergers between two cluster-distinct ancillas.
e list — List of odd-parity clusters to be placed in new buckets.

grow_boundary (cluster, union_list, **kwargs)
Grows the boundary of the cluster.

See grow_clusters for more information.
Parameters
e cluster (Cluster)— The cluster to be grown.

e union_list (List[Tuple[AncillaQubit, Edge, AncillaQubit]]) — List of
potential mergers between two cluster-distinct ancillas.

union_bucket (union_list, **kwargs)
Merges clusters in union_1list if checks are passed.

Items in union_1list consists of [ancillaA, edge, ancillaB] of two ancillas that, at the time
added to the list, were not part of the same cluster. The cluster of an ancilla is stored at ancilla.
cluster, but due to cluster mergers the cluster at ancilla_cluster may not be the root element in
the cluster-tree, and thus the cluster must be requested by ancilla.cluster. find. Since the clusters
of ancillaA and ancillaB may have already merged, checks are performed in union_check after
which the clusters are conditionally merged on edge by union_edge.

If weighted_union is enabled, the smaller cluster is always made a child of the bigger cluster in the
cluster-tree. This ensures the that the depth of the tree is minimized and the future calls to £1nd is reduced.

If dynamic_forest is disabled, cycles within clusters are not immediately removed. The acyclic forest
is then later constructed before peeling in peel_leaf.

Parameters union_1list (List[TuplelAncillaQubit, Edge, AncillaQubit]]) —
List of potential mergers between two cluster-distinct ancillas.

union_check (edge, ancilla, new_ancilla, cluster, new_cluster)
Checks whether cluster and new_cluster can be joined on edge.

See union_bucket for more information.
Return type bool

place_bucket (clusters, bucket_i)
Places all clusters in clusters in a bucket if parity is odd.

If weighted_growth is enabled. the cluster is placed in a new bucket based on its size, otherwise it is
placed in self.buckets[0]

Parameters
e clusters (List[Cluster]) - Clusters to place in buckets.
¢ bucket_i (int)— Current bucket number.

peel_clusters (**kwargs)
Loops over all clusters to find pendant ancillas to peel.

To make sure that all cluster-trees are fully peeled, all ancillas are considered in the loop. If the ancilla
has not been peeled before and belongs to a cluster of the current simulation, the ancilla is considered for
peeling by peel_leaf.

peel_leaf (cluster, ancilla)
Recursive function which peels a branch of the tree if the input ancilla is a pendant ancilla

60 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

Qsurface

If there is only one neighbor of the input ancilla that is in the same cluster, this ancilla is a pendant ancilla
and can be peeled. The function calls itself on the other ancilla of the edge leaf.

If [“dynamic_forest”] is disabled, once a pendant leaf is found, the acyclic forest is constructed by
static_forest.

Parameters
e cluster — Current cluster being peeled.
* ancilla - Pendant ancilla of the edge to be peeled.

flip edge (ancilla, edge, new_ancilla, **kwargs)
Flips the values of the ancillas connected to edge.

static_forest (ancilla)
Constructs an acyclic forest in the cluster of ancilla.

Applies recursively to all neighbors of ancilla. If a cycle is detected, edges are removed from the
cluster.

Parameters ancilla (AncillaQubit)—

check_compatibility ()
Checks compatibility of the decoder with the code class and loaded errors.

correct_edge (ancilla_qubit, key, **kwargs)
Applies a correction.

The correction is applied to the data-qubit located at ancilla_qubit.parity_qubits[key].
More specifically, the correction is applied to the Edge object corresponding to the state_type of
ancilla_qgubit.

Return type AncillaQubit

static get_neighbor (ancilla_qubit, key)
Returns the neighboring ancilla-qubit of ancilla_qubit in the direction of key.

Return type Tuple[AncillaQubit, Edge]

get_neighbors (ancilla_qubit, loop=False, **kwargs)
Returns all neighboring ancillas, including other time instances.

Parameters loop (bool) — Include neighbors in time that are not chronologically next to each
other during decoding within the same instance.

get_syndrome (find_pseudo=False)
Finds the syndrome of the code.

Parameters find_pseudo (bool, optional) — If enabled, the lists of syndromes re-
turned are not only AncillaQubit objects, buttuples of (ancilla, pseudo), where
pseudo is the closest PseudoQubit in the boundary of the code.

Return type Union[Tuple[List[AncillaQubit], List[AncillaQubit]],
Tuple[List[Tuple[AncillaQubit, PseudoQubitl]],
List[Tuplel[AncillaQubit, PseudoQubit]]]]

Returns
* list — Plaquette operator syndromes.
e list — Star operator syndromes.

class gsurface.decoders.unionfind.sim.Planar (*args, **kwargs)
Union-Find decoder for the planar lattice.

3.9. Decoders 61

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple

Qsurface

See the description of unionfind.sim. Toric.

Plotting
class gsurface.decoders.unionfind.plot.Toric (*args, **kwargs)
Union-Find decoder for the toric lattice with union-find plot.

Has all class attributes and methods from unionfind. sim. Toric, with additional parameters below. De-
fault values for these parameters can be supplied via a decoders.ini file under the section of [unionfind]
(see decoders._template.read _config).

The plotting class initiates a gsurface.plot object. For its usage, see Usage.
Parameters

* step_bucket (bool, optional)— Waits for user after every occupied bucket. De-
fault is false.

* step_cluster (bool, optional)-— Waits for user after growth of every cluster. De-
fault is false.

* step_cycle (bool, optional) — Waits for user after every edge removed due to
cycle detection. Default is false.

* step_peel (bool, optional)— Waits for user after every edge removed during peel-
ing. Default is false.

class Figure2D (decoder, name, *args, **kwargs)
Visualizer for the Union-Find decoder and Union-Find based decoders with perfect measurements.

Parameters
* args — Positional and keyword arguments are forwarded to plot. TemplatelD.
* kwargs — Positional and keyword arguments are forwarded to plot. TemplateZD.

class Figure3D (*args, **kwargs)
Visualizer for the Union-Find decoder and Union-Find based decoders with faulty measurements.

Parameters

* args — Positional and keyword arguments are forwarded to FigureZD and plot.
Template3D.

* kwargs — Positional and keyword arguments are forwarded to Figure2D and plot.
Template3D.

class gsurface.decoders.unionfind.plot.Planar (*args, **kwargs)
Union-Find decoder for the planar lattice with union-find plot.

Has all class attributes and methods from unionfind.sim.Planar, with additional parameters below.
Default values for these parameters can be supplied via a decoders.ini file under the section of [unionfind]
(see decoders._template.read _config).

The plotting class initiates a gsurface. plot object. For its usage, see Usage.
Parameters

* step_bucket (bool, optional)— Waits for user after every occupied bucket. De-
fault is false.

* step_cluster (bool, optional)— Waits for user after growth of every cluster. De-
fault is false.

62 Chapter 3. Modules

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

* step_cycle (bool, optional) — Waits for user after every edge removed due to
cycle detection. Default is false.

* step_peel (bool, optional)— Waits for user after every edge removed during peel-
ing. Default is false.

* kwargs — Keyword arguments are passed on to unionfind.sim.Planar.

class Figure2D (decoder, name, *args, **kwargs)
Visualizer for the Union-Find decoder and Union-Find based decoders with perfect measurements.

Parameters

* args — Positional and keyword arguments are forwarded to unionfind.plot.
Toric.FigurelD.

* kwargs — Positional and keyword arguments are forwarded to unionfind.plot.
Toric.FigurelD.

class Figure3D (*args, **kwargs)
Visualizer for the Union-Find decoder and Union-Find based decoders with faulty measurements.

Parameters

* args — Positional and keyword arguments are forwarded to Figure2D and plot.
Template3D.

* kwargs — Positional and keyword arguments are forwarded to FigureZ2D and plot.
Template3D.

3.9.3 ufns

The Union-Find Node-Suspension decoder.

Information

The Union-Find Node-Suspension decoder [hu2020thesis] uses the potential matching weight as a heuristic to prior-
itize growth in specific partitions — the nodes — of the Union-Find cluster (see Information). The potential matching
weight is approximated by levering a node-tree in the Node-Suspension Data-structure. The elements of the node-tree
are descendent objects of Node.

The complexity of the algorithm is determined by the calculation of the node parity in ns_parity, the node delay in
ns_delay, and the growth of the cluster, which is now applied as a recursive function that inspects all nodes in the
node tree (ufns.sim.Toric.grow_node). During cluster mergers, additional to union, node-trees are joined
by join_node_trees.

Todo: Proper calculation of delay for erasures/empty nodes in the graph

class gsurface.decoders.ufns.elements.Node (primer)
Element in the node-tree.

A subgraph V C (' is a spanning-tree of a cluster C if it is a connected acyclic subgraph that includes all
vertices of C' and a minimum number of edges. We call the spanning-tree of a cluster its ancilla-tree. An acyclic
connected spanning-forest is required for the Union-Find Decoder.

A node-tree N is a partition of a ancilla-tree V, such that each element of the partition — which we call a node n
—represents a set of adjacent vertices that lie at the same distance — the node radius :math:*r* — from the *primer

3.9. Decoders 63

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

ancilla, which initializes the node and lies at its center. The node-tree is a directed acyclic graph, and its edges

&; have lengths equal to the distance between the primer vertices of neighboring nodes.

Parameters primer (AncillaQubit)— Primer ancilla-qubit.

short
Short name of the node.

Type str

old_bound
Current boundary edges.

Type list

new_bound
Next boundary edges.

Type list

neighbors
Neighboring nodes in the node-tree.

Type list

root_list
List of even subroots of merged node-trees.

Type list

radius
Node radius size.

Type int

parity
Node parity.

Type {0.1}

delay
Number of iterations to wait.

Type int

waited
Number of iterations waited.

Type int
abstract ns_parity ()

Calculates and returns the parity of the current node.

ns_delay (parent=None, min_delay=None)
Calculates the node delay.

Head recursive function that calculates the delays of the current node and all its descendent nodes.

ng =mgq+ [ny —m.| — (=1)"[(n,m)|

The minimal delay min_delay in the tree is maintained as the actual delay is relative to the minimal

delay value within the entire node-tree.

Parameters

64

Chapter 3. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Qsurface

* parent (Optional[Tuple[Node, int]]) — The parent node and the distance to the
parent node.

* min_delay (Optional[int]) — Minimal delay value encountered during the current
calculation.

Return type int

class gsurface.decoders.ufns.elements.Syndrome (primer)

ns_parity (parent_node=None)
Calculates the node parity.

Tail recursive function that calculates the parities of the current node and all its descendent nodes.
sp = (Z (1+ sp)) mod 2
n€ children of s

Parameters parent_node (Optional[Node])— Parent node in node-tree to indicate direc-
tion.

Return type int

class gsurface.decoders.ufns.elements.Junction (primer)

ns_parity (parent_node=None)
Calculates the node parity.

Tail recursive function that calculates the parities of the current node and all its children.

Jp=1—(Z (14 np)) mod 2.

n € children of j

Parameters parent_node (Optional[Node]) — Parent node in node-tree to indicate direc-
tion.

Return type int

class gsurface.decoders.ufns.elements.OddNode (*args, **kwargs)

ns_parity (*args, **kwargs)
Calculates and returns the parity of the current node.

Return type int

gsurface.decoders.ufns.elements.print_tree (current_node, parent_node=None)
Prints the node-tree of current_node and its descendents.

Utilizes pptree to print a tree of nodes, which requires a list of children elements per node. Since the node-
tree is semi-directional (the root can be any element in the tree), we need to traverse the node-tree from
current_node in all directions except for the parent_node to find the children attributes for the current
direction.

Parameters
* current_node (Node) — Current root of the node-tree to print.

* parent_node (Optional[Node])— Parent node which will not be printed. s

3.9. Decoders 65

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pypi.org/project/pptree/
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

Simulation

The following description also applies to ufns. sim.Planar.

class gsurface.decoders.ufns.sim.Toric (*args, **kwargs)

Union-Find Node-Suspension decoder for the toric lattice.

Within the combined Union-Find and Node-Suspension data structure, every C1uster is partitioned into one
or more Node objectss. The node attribute is monkey-patched to the AncillaQubit object to assist the
identification of its parent Node.

The boundary of every cluster is not stored at the cluster object, but divided under its partitioned nodes. Cluster
growth is initiated from the root of the node-tree. The attributes root_node and min_delay are monkey-
patched to the CIuster object to assist with cluster growth in the Node-Suspension data structure. See
grow_node for more.

The current class inherits from unionfind. sim. Toric for its application the Union-Find data structure for
cluster growth and mergers. To maintain low operating complexity in UFNS, the following parameters are set
of the Union-Find parent class.

parameter value
weighted_growth | True
weighted_union True
dynamic_forest True

new_boundary
List of newly found cluster boundary elements.

Type list

cluster_add_ancilla (cluster, ancilla, parent=None, **kwargs)
Recursively adds erased edges to cluster and finds the new boundary.

For a given ancilla, this function finds the neighboring edges and ancillas that are in the the currunt
cluster. If the newly found edge is erased, the edge and the corresponding ancilla will be added to the
cluster, and the function applied recursively on the new ancilla. Otherwise, the neighbor is added to the
new boundary self.new_boundary.

Parameters
e cluster (Cluster) — Current active cluster

* ancilla(AncillaQubit)— Ancillafrom which the connected erased edges or bound-
ary are searched.

bound ancilla_to_node ()
Saves the new boundary to their respective nodes.

Saves all the new boundaries found by cluster _add ancilla, which are of the form
[inner_ancilla, edge, outer_ancilla], to the node at inner_ancilla.node. This
method is called after cluster union in union_bucket, which also joins the node-trees, such that the
new boundary is saved to the updated nodes.

find_clusters (**kwargs)
Initializes the clusters on the lattice.

For every non-trivial ancilla on the lattice, a C1uster is initiated. If any set of ancillas are connected
by some set of erased qubits, all connected ancillas are found by cluster_add _ancilla and asingle
cluster is initiated for the set.

66

Chapter 3. Modules

https://docs.python.org/3/library/stdtypes.html#list

Qsurface

Additionally, a syndrome-node is initiated on the non-trivial ancilla — a syndrome — with the ancilla as
primer. New boundaries are saved to the nodes by bound_ancilla_to_node.

The cluster is then placed into a bucket based on its size and parity by place bucket. See
grow_clusters for more information on buckets.

grow_clusters (**kwargs)
Grows odd-parity clusters outward for union with others until all clusters are even.

Lists of odd-parity clusters are maintained at se1 f . buckets. Starting from bucket 0, odd-parity clusters
are popped from the bucket by ‘grow_bucket and grown at the boundary by grow_boundary by adding
1 for every boundary edge in cluster.bound in self.support. Grown clusters are then placed in
anew bucket by place_bucket based on its size if it has odd parity.

Edges are fully added to the cluster per two growth iterations. Since a cluster with half-grown edges at
the boundary has the same size (number of ancillas) as before growth, but is non-arguably bigger, the
degeneracy in cluster size is differentiated by cluster. support. When an union occurs between two
clusters during growth, if the merged cluster is odd, it is placed in a new bucket. Thus the real bucket
number is saved at the cluster locally as cluster.bucket. These two checks are performed before a
cluster is grown in grow_bucket.

The chronology of events per bucket must be the following:
1. Grow all clusters in the bucket if checks passed.
* Add all odd-parity clusters after growth to place_list.
* Add all merging clusters to union_list.
2. Merge all clusters in union_list
* Add odd-parity clusters after union to place_list.
3. Place all clusters in place_11st in new bucket if parity is odd.

For clusters with cluster.support==1 or with half-grown edges at the boundary, the new bound-
ary at clusters.new_bound consists of the same half-grown edges. For clusters with cluster.
support==0, the new boundary is found by cluster_add_ancilla.

The current implementation of grow_clusters for the ufns decoder currently includes a work-around
for a non-frequently occuring bug. Since the grown of a cluster is separated into nodes, and nodes may
be buried by surrounding cluster trees such that it is an interior element and has no boundaries, it may be
possible that when an odd cluster is grown no edges are actually added to the cluster. In this case, due to
cluster parity duality the odd cluster will be placed in the same bucket after two rounds of growth. The
work-around is to always check if the previous bucket is empty before moving on to the next one.

grow_boundary (cluster, union_list, **kwargs)
Grows the boundary of the cluster.

See grow_clusters for more information. Each element in the root_1ist of the root node of the
cluster is a subroot of an even subtree in the node-tree. From each of these subroots, the node parity
and delays are calculated by ns_parity and ns_delay. The node-tree is then recursively grown by
grow_node.

Parameters
e cluster (Cluster)— The cluster to be grown.

e union_list (List[Tuple[AncillaQubit, Edge, AncillaQubit]]) — List of
odd-parity clusters to be placed in new buckets.

grow_node (cluster, node, union_list, parent_node=None)
Recursive function that grows a node and its descendents.

3.9. Decoders 67

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple

Qsurface

Grows the boundary list that is stored at the current node if there the current node is not suspended. The
condition required is the following:

where N is the node-tree. The minimal delay value in the node-tree here stored as cluster.
min_delay. Fully grown edges are added to union_1list to be later considered by union bucket.

Parameters
* cluster (Cluster) — Parent cluster object of node.
* node (Node) — Node to consider for growth.

e union_list (List[Tuple[AncillaQubit, Edge, AncillaQubit]]) — List of
potential mergers between two cluster-distinct ancillas.

* parent_node (Optional[Node])— Parent node in the node-tree to indicate recursive
direction.

grow_node_boundary (node, union_list)
Grows the boundary of a node.

union_bucket (union_list, **kwargs)
Potentially merges two neighboring ancillas.

If the check by union check is passed, the clusters of ancilla and new_ancilla are merged.
additionally, the node-trees either directly joined, or by the creation of a new junction-node which as
new_ancilla asits primer. Weighted union is applied to ensure low operating complexity.

check_compatibility ()
Checks compatibility of the decoder with the code class and loaded errors.

correct_edge (ancilla_qubit, key, **kwargs)
Applies a correction.

The correction is applied to the data-qubit located at ancilla_qubit.parity_qubits[key].
More specifically, the correction is applied to the Edge object corresponding to the state_type of
ancilla_qubit.

Return type AncillaQubit

decode (**kwargs)
Decodes the code using the Union-Find algorithm.

Decoding process can be subdivided into 3 sections:
1. Finding the initial clusters.
2. Growing and merging these clusters.
3. Peeling the clusters using the Peeling algorithm.

Parameters kwargs - Keyword arguments are passed on to find clusters,
grow_clusters and peel_clusters.

flip_edge (ancilla, edge, new_ancilla, **kwargs)
Flips the values of the ancillas connected to edge.

get_cluster (ancilla)
Returns the cluster to which ancilla belongs to.

If ancilla has no cluster or the cluster is not from the current simulation, none is returned. Otherwise,
the root element of the cluster-tree is found, updated to ancilla.cluster and returned.

Parameters ancilla (AncillaQubit) - The ancilla for which the cluster is to be found.

68 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional

Qsurface

Return type Optional[Cluster]

static get_neighbor (ancilla_qubit, key)
Returns the neighboring ancilla-qubit of ancilla_qubit in the direction of key.

Return type Tuple[AncillaQubit, Edge]

get_neighbors (ancilla_qubit, loop=False, **kwargs)
Returns all neighboring ancillas, including other time instances.

Parameters loop (bool) — Include neighbors in time that are not chronologically next to each
other during decoding within the same instance.

get_syndrome (find_pseudo=False)
Finds the syndrome of the code.

Parameters find_pseudo (bool, optional) — If enabled, the lists of syndromes re-
turned are not only AncillaQubit objects, buttuples of (ancilla, pseudo), where
pseudo is the closest PseudoQubit in the boundary of the code.

Return type Union[Tuple[List[AncillaQubit], List[AncillaQubit]],
Tuple[List[Tuple[AncillaQubit, PseudoQubitl]],
List[Tuple[AncillaQubit, PseudoQubit]]]]

Returns
* list — Plaquette operator syndromes.
e list — Star operator syndromes.

grow_bucket (bucket, bucket_i, **kwargs)
Grows the clusters which are contained in the current bucket.

See grow_clusters for more information.

Parameters
* bucket (List[Cluster])— List of clusters to be grown.
¢ bucket_i (int) - Current bucket number.

Return type Tuple[List, List]

Returns
e list — List of potential mergers between two cluster-distinct ancillas.
* [ist — List of odd-parity clusters to be placed in new buckets.

peel_clusters (**kwargs)
Loops over all clusters to find pendant ancillas to peel.

To make sure that all cluster-trees are fully peeled, all ancillas are considered in the loop. If the ancilla
has not been peeled before and belongs to a cluster of the current simulation, the ancilla is considered for
peeling by peel_leaf.

peel_leaf (cluster, ancilla)
Recursive function which peels a branch of the tree if the input ancilla is a pendant ancilla

If there is only one neighbor of the input ancilla that is in the same cluster, this ancilla is a pendant ancilla
and can be peeled. The function calls itself on the other ancilla of the edge leaf.

If [“dynamic_forest”] is disabled, once a pendant leaf is found, the acyclic forest is constructed by
static_forest.

Parameters

3.9.

Decoders 69

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Qsurface

e cluster — Current cluster being peeled.
* ancilla - Pendant ancilla of the edge to be peeled.

place_bucket (clusters, bucket_i)
Places all clusters in clusters in a bucket if parity is odd.

If weighted_growth is enabled. the cluster is placed in a new bucket based on its size, otherwise it is
placed in self.buckets[0]

Parameters
¢ clusters (List[Cluster]) - Clusters to place in buckets.
¢ bucket_i (int) - Current bucket number.

static_forest (ancilla)
Constructs an acyclic forest in the cluster of ancilla.

Applies recursively to all neighbors of ancilla. If a cycle is detected, edges are removed from the
cluster.

Parameters ancilla (AncillaQubit)—

union_check (edge, ancilla, new_ancilla, cluster, new_cluster)
Checks whether cluster and new_cluster can be joined on edge.

See union_bucket for more information.
Return type bool

class gsurface.decoders.ufns.sim.Planar (*args, **kwargs)
Union-Find Node-Suspension decoder for the planar lattice.

See the description of ufns.sim.Toric.

Plotting
class gsurface.decoders.ufns.plot.Toric (*args, **kwargs)
Union-Find Node-Suspension decoder for the toric lattice with union-find plot.

Has all class attributes, methods, and nested figure classes from ufns. sim. Toric, with additional parameters
below. Default values for these parameters can be supplied via a decoders.ini file under the section of [ufns]
(see decoders._template.read config).

The plotting class initiates a gsurface.plot object. For its usage, see Usage.
Parameters

* step_bucket (bool, optional)— Waits for user after every occupied bucket. De-
fault is false.

* step_cluster (bool, optional)— Waits for user after growth of every cluster. De-
fault is false.

* step_node (bool, optional)— Waits for user after growth of every node. Default is
false.

* step_cycle (bool, optional) — Waits for user after every edge removed due to
cycle detection. Default is false.

* step_peel (bool, optional)— Waits for user after every edge removed during peel-
ing. Default is false.

70 Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

class gsurface.decoders.ufns.plot.Planar (*args, **kwargs)
Union-Find Node-Suspension decoder for the planar lattice with union-find plot.

Has all class attributes, methods, and nested figure classes from ufns. sim.Planar, with additional param-
eters below. Default values for these parameters can be supplied via a decoders.ini file under the section of
[ufns] (see decoders._template.read config).

The plotting class initiates a gsurface. plot object. For its usage, see Usage.
Parameters

* step_bucket (bool, optional)— Waits for user after every occupied bucket. De-
fault is false.

* step_cluster (bool, optional)— Waits for user after growth of every cluster. De-
fault is false.

* step_node (bool, optional)— Waits for user after growth of every node. Default is
false.

* step_cycle (bool, optional) — Waits for user after every edge removed due to
cycle detection. Default is false.

* step_peel (bool, optional)— Waits for user after every edge removed during peel-
ing. Default is false.

3.10 Plotting template

3.10.1 Usage

Plot objects that inherit from the template plot classes have the following properties.
* Fast plotting by use of matplotlib.canvas.blit.
* Redrawing past iterations of the figure by storing all changes in history.
» Keyboard navigation for iteration selection.
* Plot object information by picking.

When the focus is on the figure, indicated by a green circle in the bottom right corner, the user can navigate through
the history of the figure by the commands below.

key function

h show help

i show all iterations

enter or right go to next iteration, enter iteration number
backspace or left | go to previous iteration

n g0 to newest iteration

0-9 input iteration number

If the focus is lost, it can be regained by calling template. focus on the plot object.

Default values for plot properties such as colors and linewidths are saved in a plot.ini file. Any plot property can be
overwritten by supplying the override value as a keyword argument during object initialization or a custom plot.ini file
in the working directory.

3.10. Plotting template 4

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

3.10.2 Development

class gsurface.plot.PlotParams (blocking_wait=- 1, blocking_pick_radius=10,
scale_figure_length=10, scale_figure_height=10,
scale_font_primary=12, scale_font_secondary=10,

scale_3d_layer=8, color_background=1, 1, 1, 0,
color_edge=0.8, 0.8, 0.8, 1, color_qubit_edge=0.7,
0.7, 0.7, 1, color_qubit face=0.95, 0.95 0.95, 1,
color_x_primary=0.9, 0.3, 0.3, 1, color_z_primary=0.5, 0.5, 0.9,
1, color_y_primary=0.9, 0.9, 0.5, 1, color_x_secondary=0.9,
0.7, 0.3, 1, color_z_secondary=0.3, 0.9, 03, 1,
color_y_secondary=0.9, 0.9, 0.5, 1, color_x_tertiary=0.5, 0.1,
0.1, 1, color_z_tertiary=0.1, 0.1, 0.5, 1, color_y_tertiary=0.9,
0.9, 0.5, 1, alpha_primary=0.35, alpha_secondary=0.5,

line_width_primary=1.5, line_width_secondary=3,
line_style_primary="solid’, line_style_secondary='dashed’,
line_style_tertiary="dotted’, patch_circle_2d=0.1,
patch_rectangle_2d=0.1, patch_circle_3d=30,

patch_rectangle_3d=30, axis_main=0.075, 0.1, 0.7, 0.85,
axis_main_non_interact=0.0, 0.05, 0.8, 0.9, axis_block=0.96,
0.01, 0.03, 0.03, axis_nextbutton=0.85, 0.05, 0.125, 0.05,
axis_prevbutton=0.85, 0.12, 0.125, 0.05, axis_legend=0.85, 0.5,
0.125, 0.3, axis_text=0.05, 0.025, 0.7, 0.05, axis_radio=0.85,
0.19, 0.125, 0.125, font_default_size=12, font_title_size=16,
font_button_size=12, axis3d_pane_color=1, 1, 1, 0,
axis3d_line_color=0, 0, 0, 0.1, axis3d_grid_line_style="dotted’,
axis3d_grid_line_alpha=0.2)
Parameters for the plotting template classes.

Contains all parameters used in inherited objects of Template2D and Template3D. The dataclass is initial-
ized with many default values for an optimal plotting experience. But if any parameters should be changed, the
user can call the class to create its own instance of plotting paramters, where the altered paramters are supplied
as keyword arguments. The instance can be supplied to the plotting class via the plot_params keyword
argument.

Examples

See the below example where the background color of the figure is changed to black. Note that we have to
inherit from the Template2D class.

>>> class Plotting (Template2D) :

pass
>>> custom_params = PlotParams (color_background = (0,0,0,1))
>>> plot_with_custom_params = Plotting(plot_params=custom_params)

load_params (param_dict)
Loads extra plotting parameters.

Additional parameters can be loaded to the dataclass via this method. The additional parameters must be
a dictionary where values are stored to the dataclass with the key as attribute name. If the value is a string
that equals to any already defined dataclass attribute, the value at the existing attribute is used for the new
parameter. See examples.

Parameters params_dict — Dictionary or dictionary of dictionaries of additional parameters.

72

Chapter 3. Modules

Qsurface

Examples

New parameters can be added to the dataclass. Values of dataclass attributes are used if present.

>>> params = PlotParams ()

>>> params.alpha_primary

0.35

>>> params.load_params ({
"new_attr" : "some_value",
"use_existing" : "alpha_primary",

})
>>> params.new_attr
some_value
>>> params.use_existing
0.35

Nested dictionaries will also load existing attribute values.

>>> params.load_params ({
"category": {
"new_attr" : "some_value",
"use_existing" : "alpha_primary",

)
>>> params.category
{"new_attr" : "some_value", "use_existing" : 0.35}

class gsurface.plot.BlockingKeyInput (*args, **kwargs)
Blocking class to receive key presses.

See also:
None Inherited blocking class.

class gsurface.plot.Template2D (plot_params=None, projection=None, **kwargs)
Template 2D plot object with history navigation.

This template plot object which can either be an interactive figure using the Tkinter backend, or shows each
plotting iteration as a separate figure for the IPython inline backend. The interactive figure has the following
features.

 Fast plotting by use of “blitting”.

* Redrawing past iterations of the figure by storing all changes in history.
» Keyboard navigation for iteration selection.

* Plot object information by picking.

To instance this class, one must inherit the current class. The existing objects can then be altered by updating
their plot properties by new_properties (), where the changed properties must be a dictionary with key-
words and values corresponding tho the respective matplotlib object. Every change in plot property is stored in
self.history_dict. This allows to undo or redo changes by simply applying the saved changed properties
in the dictionary. Fast plotting is enabled by not drawing the figure after every queued change. Instead, each
object is draw in the canvas individually after a property change and a series of changes is drawn to the figure
when a new plot iteration is requested via new_iter (). This is performed by blitting the canvas.

Keyboard navigation and picking is enabled by blocking the code via a custom BlockingKeyInput class.
While the code is blocked, inputs are caught by the blocking class and processed for history navigation or picking

3.10. Plotting template 73

Qsurface

navigation. Moving the iteration past the available history allows for the code to continue. The keyboard input
is parsed by focus ().

Default values for plot properties such as colors and linewidths loaded from P1otParams. A custom parameter
dataclass can be supplied via the plot_params keyword argument.

Parameters plot_params (Optional[PlotParams]) — Plotting parameters dataclass con-
taining colors, styles and others.

figure
Main figure.

Type matplotlib.figure.Figure

interactive
Enables GUI elements and interactive plotting.

Type bool

main_ax
Main axis of the figure.

Type matplotlib.axes.Axes

history_dict
For each iteration, for every plot object with changed properties, the properties are stored as a nested
dictionary. See the example below.

>>> history_dict = {
0: {
"<Line2D object>": {
"color": "k",
}V
"<Circle object>": {
"linestyle": "-",
}
}
1: |
"<Line2D object>": {
"color": "r",
br
"<Circle object>": {
"linestyle": ":",

}

Type collections.defaultdict

history iters
Total number of iterations in history.

Type int

history_ iter
The current plot iteration.

Type int

history iter_ names
List of length history_iters containing a title for each iteration.

74

Chapter 3. Modules

https://docs.python.org/3/library/typing.html#typing.Optional
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Qsurface

Type list of str

history_ at_newest
Whether the current plot iteration is the latest or newest.

Type bool

history_ event_iter
String catching the keyboard input for the wanted plot iteration.

Type str

future_dict
Same as history_dict but for changes for future iterations.

Type collections.defaultdict

temporary_changes
Temporary changes for plot properties, requested by temporary properties (), which are immedi-
ately drawn to the figure. These properties can be overwritten or undone before a new iteration is requested
via new_iter (). When a new iteration is requested, we need to find the difference in properties of the
queued changes with the current iteration and save all differences to self.history_dict.

Type collections.defaultdict

temporary_saved
Temporary changes are saved to the current iteration iter. Thus when a new iteration iter + 1 is
requested, we need to recalculate the differences of the properties in iter—1 and the current itera-
tion with the temporary changes. The previous property values when temporary changes are requested
by temporary properties () are saved to self.temporary_saved and used as the property
changes for iter—1.

Type collections.defaultdict

interact_axes
All iteractive elements should have their own axis saved in self.interact_axes. The axis.
active attribute must be added to define when the axis is shown. If the focus on the figure is lost,
all axes in self.interact_axes are hidden by setting axis.active=False.

Type dictof matplotlib.axes.Axes

interact_bodies
All interactive elements such as buttons, radiobuttons, sliders, should be saved to this dictionary with the
same key as their axes in self.interact_axes.

Type dict
Notes

Note all backends support blitting. It does not work with the OSX backend (but does work with other GUI
backends on mac).

3.10. Plotting template 75

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#dict

Qsurface

Examples

A matplotlib.lines.Line2D object is initiated with color="k" and 1s="-". We request that the
color of the object is red in a new plot iteration.

>>> import matplotlib.pyplot as plt
class Example (Template2D) :

def _ init__ (self, ~args, =**kwargs):
super () .__init__ (xargs, =xkwargs)
self.line = plt.plot (0, 0, color="k", 1s="-")[0] # Line located at,,

—[0] after plot
>>> fig = Example ()
>>> fig.new_properties(fig.line, {"color": "r})
>>> fig.new_iter ()
>>> fig.history_dict
{
0: {"<Line2D>": {"color": "k"}},
1: {"<Line2D>": {"color": "r"}},

The attribute self.history_dict thus only contain changes to plot properties. If we request another

[Tt

iteration but change the linestyle to “:”, the initial linestyle will be saved to iteration 1.

>>> fig.new_properties(fig.line, {"1s": ":"})
>>> fig.new_iter ()

>>> fig.history_dict

{

0: {"<Line2D>": {"color": "k"}},
1: {"<Line2D>": {"color": "r", "ls: "-"}},
2: {"<Line2D>": {ls: ":"}},

We temporarily alter the linewidth to 2, and then to 1.5. After we are satisfied with the temporary changes. we
request a new iteration with the final change of color to green.

>>> fig.temporary_properties (fig.line, {"lw": 2})
>>> fig.temporary_properties(fig.line, {"lw": 1.5})
>>> fig.temporary_changes

{"<Line2D>": {"1lw": 1.5}}

>>> fig.temporary_saved

{"<Line2D>": {"lw": 1}} # default value

>>> fig.new_properties(fig.line, {"color": "g"})
>>> fig.new_iter ()

>>> fig.history_dict

{

0: {"<Line2D>": {"color": "k"}},

1: {"<Line2D>": {"color": "r", "ls: "=-", "lw": 1}},
2: {"<Line2D>": {"lw": 1.5, color": "r"},

3: {"<Line2D>": {"color": "g"}},

Properties in self.temporary_saved are saved to self.history_dict in the previous iteration,
properties in self.temporary_changes are saved to the current iteration, and new properties are saved to
the new iteration.

The history_dict for a plot with a Line2D object and a Circle object. In the second iteration, the color of
the Line2D object is updated from black to red, and the linestyle of the Circle object is changed from “-” to “:”.

76

Chapter 3. Modules

https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D

Qsurface

load_interactive_backend ()
Configures the plotting backend.

If the Tkinter backend is enabled or can be enabled, the function returns True. For other backends False is
returned.

Return type bool

close ()
Closes the figure.

focus ()
Enables the blocking object, catches input for history navigation.

The BlockingKeyInput object is called which blocks the execution of the code. During this block, the user
input is received by the blocking object and return to the current method. From here, we can manipulate
the plot or move through the plot history and call focus () again when all changes in the history have
been drawn and blit.

key function

h show help

i show all iterations

d redraw current iteration

enter or right g0 to next iteration, enter iteration number
backspace or left | go to previous iteration

n g0 to newest iteration

0-9 input iteration number

When the method is active, the focus is on the figure. This will be indicated by a green circle in the bottom
right of the figure. When the focus is lost, the code execution is continued and the icon is red. The change
is icon color is performed by _set_figure_state (), which also hides the interactive elements when
the focus is lost.

draw_figure (new_iter_name=None, output=True, carriage_return=False, **kwargs)
Draws the canvas and blocks code execution.

Draws the queued plot changes onto the canvas and calls for focus () which blocks the code execution
and catches user input for history navigation.

If a new iteration is called by supplying a new_iter_name, we additionally check for future property
changes in the self. future_dict, and add these changes to the queue. Finally, all queued property
changes for the next iteration are applied by change_properties.

Parameters

* new_iter_name (Optional[str]) — Name of the new iteration. If no name is sup-
plied, no new iteration is called.

¢ output (bool) — Prints information to the console.

* carriage_return (bool)— Applies carriage return to remove last line printed.
See also:
focus (), change_properties ()

new_artist (artist, axis=None)
Adds a new artist to the axis.

3.10. Plotting template 77

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Qsurface

Newly added artists must be hidden in the previous iteration. To make sure the history is properly logged,
the visibility of the artist is setto False, and a new property of shown visibility is added to the queue
of the next iteration.

Parameters
e artist (Artist)— New plot artist to add to the axis.
* axis (Optionall[Axes])— Axis to add the figure to.
Return type None

static change_properties (artist, prop_dict)
Changes the plot properties and draw the plot object or artist.

new_properties (artist, properties, saved_properties={}, **kwargs)
Parses a dictionary of property changes of a matplotlib artist.

New properties are supplied via properties. If any of the new properties is different from
its current value, this is seen as a property change. The old property value is stored in self.
history_dict[self.history_iteration], and the new property value is stored at self.
history_dict[self.history_iteration+1]. These new properties are queued for the next
interation. The queue is emptied by applying all changes when draw_figure is called. If the same
property changes 2+ times within the same iteration, the previous property change is removed with
next_prop.pop (key, None).

The saved_properties parameter is used when temporary property changes have been applied by
temporary_changes, in which the original properties are saved to self.temporary_saved
as the saved properties. Before a new iteration is drawn, the temporary changes, which can
be overwritten, are compared with the saved changes and the differences in properties are saved
to [self.history_dict[self.history_iter-1]] and self.history_dict[self.
history_iteration].

Some color values from different matplotlib objects are nested, some are list or tuple, and others may be
a numpy .ndarray. The nested methods get_nested () and get_nested_property () make
sure that the return type is always a list.

Parameters
e artist (Artist)— Plot object whose properties are changed.
* properties (dict) — Plot properties to change.

* saved_properties (dict)— Override current properties and parse previous and cur-
rent history.

temporary_ properties (artist, properties, **kwargs)
Applies temporary property changes to a matplotlib artist.

Only available on the newest iteration, as we cannot change what is already in the past. All values in
properties are immediately applied to artist. Since temporary changes can be overwritten within
the same iteration, the first time a temporary property change is requested, the previous value is saved to
self.temporary_saved. When the iteration changes, the property differences of the previous and
current iteration are recomputed and saved to self.history_dict in_draw_from_history ().

Parameters
e artist (Artist)— Plot object whose properties are changed.
* properties (dict) — Plot properties to change.

class gsurface.plot.Template3D (*args, **kwargs)
Template 3D plot object with history navigation.

78 Chapter 3. Modules

https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER
FOUR

LICENSE

BSD 3-Clause License
Copyright (c) 2020, Shui Hu All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

79

Qsurface

80 Chapter 4. License

CHAPTER
FIVE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

81

Qsurface

82 Chapter 5. Indices and tables

BIBLIOGRAPHY

[wang2003confinement] Chenyang Wang, Jim Harrington and John Preskill, Confinement-Higgs transition in a dis-
ordered gauge theory and the accuracy threshold for quantum memory, Annals of Physics, 1:31-58, 2003.

[dennis2002] Dennis, Eric and Kitaev, Alexei and Landahl, Andrew and Preskill, John, Topological quantum memory,
in Journal of Mathematical Physics, 2002, 43(9)4452-4505.

[wang2003] Wang, Chenyang and Harrington, Jim and Preskill, John, Confinement-Higgs transition in a disordered
gauge theory and the accuracy threshold for quantum memory, in Annals of Physics, 2003, 303(1)31-58.

[kolmogorov2009] Kolmogorov, Vladimir, Blossom V: A new implementation of a minimum cost perfect matching
algorithm in Mathematical Programming Computation (MPC), July 2009, 1(1):43-67.

[delfosse2017almost] Delfosse, Nicolas and Nickerson, Naomi H., Almost-linear time decoding algorithm for topo-
logical codes, arXiv preprint arXiv:1709.06218, 2017.

[delfosse2017linear] Delfosse, Nicolas and Zemor, Gilles, Linear-time maximum likelihood decoding of surface codes
over the quantum erasure channel, arXiv preprint arXiv:1703.01517, 2017.

[tarjan1975efficiency] Tarjan, Robert, Efficiency of a good but not linear set union algorithm, Journal of the ACM,
22(2)215-225, 1975.

[hu2020thesis] Hu, Mark Shui, Quasilinear Time Decoding Algorithm for Topological Codes with High Error Thresh-
old, DOI: 10.13140/RG.2.2.13495.96162, 2020.

83

Qsurface

84 Bibliography

q

gsurface.
gsurface.
gsurface.
gsurface.
gsurface.
gsurface.
gsurface.
gsurface.

55

gsurface.
gsurface.
.errors.pauli, 46
gsurface.
gsurface.
gsurface.

gsurface

codes.elements, 14

decoders
decoders
decoders
decoders
decoders
decoders
decoders

._template, 47
.mwpm, 50
.mwpm.plot, 55
.ufns, 63
.ufns.elements, 63
.unionfind, 55
.unionfind.elements,

errors._template, 43

errors.erasure, 46

main, 7
plot, 72

threshold, 11

PYTHON MODULE INDEX

85

Qsurface

86 Python Module Index

A

add_ancilla() (gsur-
face.decoders.unionfind.elements. Cluster
method), 56

add_ancilla_qubit () (gsur-

face.codes._template.plot. PerfectMeasurements
method), 24

add_ancilla_qubit () (gsur-
face.codes._template.sim.FaultyMeasurements
method), 19

add_ancilla_qubit () (gsur-
face.codes._template.sim. PerfectMeasurements
method), 18

add_ancilla_qubit () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 40

add_ancilla_qubit () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 36

add_ancilla_qubit () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 34

add_ancilla_qubit () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 32

add_ancilla_qgubit () (gsur-
face.codes.toric.sim. FaultyMeasurements
method), 27

add_ancilla_qubit () (gsur-

face.codes.toric.sim.PerfectMeasurements
method), 26

add_data_qubit () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 24

add_data_qubit () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 20

add_data_qubit () (gsur-
face.codes._template.sim.PerfectMeasurements
method), 18

add_data_qubit () (gsur-
face.codes.planar.plot. PerfectMeasurements

INDEX

method), 40

add_data_qubit () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 36

add_data_qubit () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 35

add_data_qubit () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 32

add_data_qubit ()
face.codes.toric.sim.FaultyMeasurements
method), 27

add_data_qubit () (gsur-
face.codes.toric.sim.PerfectMeasurements
method), 26

add_node () (gsurface.codes.elements.Edge method),
15

add_node () (gsurface.codes.elements.PseudoEdge
method), 16

add_pseudo_qubit () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 24

add_pseudo_qubit () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 20

add_pseudo_qubit () (gsur-
face.codes._template.sim. PerfectMeasurements
method), 18

add_pseudo_qubit () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 40

add_pseudo_qubit () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 36

add_pseudo_qubit () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 35

add_pseudo_qubit () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 32

add_pseudo_qubit ()

(gsur-

(gsur-

87

Qsurface

face.codes.toric.sim. FaultyMeasurements
method), 28

add_pseudo_qgubit () (gsur-
face.codes.toric.sim.PerfectMeasurements
method), 26

add_vertical_edge () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 19

add_vertical_edge () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 36

add_vertical_edge ()
face.codes.toric.sim. FaultyMeasurements
method), 28

ancilla_qgubits (gsur-
face.codes._template.sim. PerfectMeasurements
attribute), 16

AncillaQubit (class in gsurface.codes.elements), 14

B

BenchmarkDecoder (class in gsurface.main), 9
bitflip () (gsurface.errors.pauli.Sim static method),

(gsur-

46
bitphaseflip () (gsurface.errors.pauli.Sim static
method), 46
BlockingKeyInput (class in gsurface.plot), 73
bound_ancilla_to_node () (gsur-

face.decoders.ufns.sim.Toric method), 66
bucket (gsurface.decoders.unionfind.elements.Cluster
attribute), 56

bucket_max_filled (gsur-
face.decoders.unionfind.sim.Toric attribute),
58

buckets (gsurface.decoders.unionfind.sim.Toric at-
tribute), 58

C

change_properties() (gsur-

face.codes._template.plot. PerfectMeasurements. Figife

static method), 22

change_properties() (gsur-

face.codes.planar.plot. PerfectMeasurements. Figure ° = * € ct_edge ()

static method), 38

change_properties () (gsur-

face.codes.toric.plot. PerfectMeasurements. Figure

static method), 30
change_properties()

static method), 78
check_compatibility ()

face.decoders._template. Plot method), 49

(gsurface.plot. Template2D

(gsur-

check_compatibility () (gsur-
face.decoders._template.Sim method), 48

check_compatibility () (gsur-
face.decoders.mwpm.sim.Planar method),

53

check_compatibility () (gsur-
face.decoders.mwpm.sim.Toric method),
52

check_compatibility () (gsur-

face.decoders.ufns.sim.Toric method), 68

check_compatibility () (gsur-
face.decoders.unionfind.sim.Toric method),
61

close () (gsurface.codes._template.plot. PerfectMeasurements.Figure
method), 22

close () (gsurface.codes.planar.plot. PerfectMeasurements.Figure
method), 38

close () (gsurface.codes.toric.plot.PerfectMeasurements.Figure
method), 30

close () (gsurface.plot.Template2D method), 77

Cluster (class in qsur-
face.decoders.unionfind.elements), 55

cluster_add_ancilla() (gsur-

face.decoders.ufns.sim.Toric method), 66

cluster_add_ancilla () (gsur-
face.decoders.unionfind.sim.Toric method),
58

cluster_index (gsur-
face.decoders.unionfind.sim.Toric attribute),

58

clusters (gsurface.decoders.unionfind.sim.Toric at-
tribute), 58

code_params (gsurface.codes._template.plot. PerfectMeasurements. Figu
attribute), 22

compatibility_errors (gsur-
face.decoders._template.Sim attribute), 48

compatibility_measurements (gsur-
face.decoders._template.Sim attribute), 48

correct_edge () (gsurface.decoders._template.Plot

method), 49
correct_edge () (gsurface.decoders._template.Sim

method), 48
rect_edge () (gsur-
face.decoders.mwpm.sim.Planar method),

53

(gsur-
face.decoders.mwpm.sim.Toric method),

52
correct_edge ()
method), 68

(gsurface.decoders.ufns.sim.Toric

correct_edge () (gsur-
face.decoders.unionfind.sim.Toric method),
61

correct_matching () (gsur-
face.decoders.mwpm.sim.Planar method),
53

correct_matching () (gsur-
face.decoders.mwpm.sim.Toric method),

88

Index

Qsurface

52
count_calls ()
method), 11

(gsurface.main.BenchmarkDecoder

D

data (gsurface.main.BenchmarkDecoder attribute), 10

static method), 41

entangle_pair () (gsur-
face.codes.planar.sim. FaultyMeasurements
static method), 36

entangle_pair () (gsur-
face.codes.planar.sim. PerfectMeasurements

data_qubits (gsurface.codes._template.sim. PerfectMeasurements static method), 35

attribute), 16
DataQubit (class in gsurface.codes.elements), 14
decode () (gsurface.decoders._template.Plot method),

49

decode () (gsurface.decoders._template.Sim method),
49

decode () (gsurface.decoders.mwpm.sim.Planar
method), 53

decode () (gsurface.decoders.mwpm.sim.Toric
method), 51

decode () (gsurface.decoders.ufns.sim.Toric method),
68

decode () (gsurface.decoders.unionfind.sim.Toric

method), 58
default_error_rates
face.errors._template.Sim attribute), 43

(gsurface.decoders.ufns.elements.Node
tribute), 64
draw_figure ()

(gsur-
delay at-

(gsur-

entangle_pair () (gsur-
face.codes.toric.plot. PerfectMeasurements
static method), 32

entangle_pair ()
face.codes.toric.sim. FaultyMeasurements
static method), 28

entangle_pair () (gsur-
face.codes.toric.sim.PerfectMeasurements
static method), 26

(gsur-

erasure () (gsurface.errors.erasure.Sim Static
method), 46
error_methods (gsur-

face.codes._template.plot. PerfectMeasurements.Figure

attribute), 22
error_methods (gsurface.errors._template.Plot at-
tribute), 45

errors (gsurface.codes._template.sim.PerfectMeasurements

attribute), 17

face.codes._template.plot. PerfectMeasurements. Fi iEure

method), 22

draw_figure () (gsur-

face.codes.planar.plot. PerfectMeasurements.Figuréault yMeasurements

method), 38

draw_figure () (gsur-

face.codes.toric.plot. PerfectMeasurements. Figure

method), 30

draw_figure () (gsurface.plot.Template2D method),
77

duration () (gsurface.main.BenchmarkDecoder

method), 11

E

Edge (class in gsurface.codes.elements), 15

edges (gsurface.codes.elements.DataQubit attribute),
14

entangle_pair () (gsur-
face.codes._template.plot. PerfectMeasurements
static method), 24

entangle_pair () (gsur-
face.codes._template.sim. FaultyMeasurements
static method), 20

entangle_pair () (gsur-
face.codes._template.sim. PerfectMeasurements
static method), 18

entangle_pair () (gsur-
face.codes.planar.plot. PerfectMeasurements

FaultyMeasurements (class in qsur-
face.codes._template.plot), 25
(class in qsur-
face.codes._template.sim), 18
FaultyMeasurements (class in qsur-
face.codes.planar.plot), 42
FaultyMeasurements (class in qsur-
face.codes.planar.sim), 36
FaultyMeasurements (class in qsur-
face.codes.toric.plot), 34
FaultyMeasurements (class in qsur-

face.codes.toric.sim), 277

figure (gsurface.codes._template.plot.PerfectMeasurements

attribute), 21
figure (gsurface.plot. Template2D attribute), 74

find () (gsurface.decoders.unionfind.elements.Cluster
method), 56

find_clusters () (gsurface.decoders.ufns.sim.Toric
method), 66

find_clusters () (gsur-
face.decoders.unionfind.sim.Toric method),
59

fit_data() (gsurface.threshold. ThresholdFit
method), 13

flip_edge () (gsurface.decoders.ufns.sim.Toric
method), 68

Index

89

Qsurface

flip_edge () (gsurface.decoders.unionfind.sim.Toric
method), 61

52

get_syndrome () (gsurface.decoders._template.Plot

focus () (gsurface.codes._template.plot. PerfectMeasurements.Figuraethod), 50

method), 23

get_syndrome () (gsurface.decoders._template.Sim

focus () (gsurface.codes.planar.plot. PerfectMeasurements.Figure method), 48

method), 38

focus () (gsurface.codes.toric.plot.PerfectMeasurements.Figure

method), 30
focus () (gsurface.plot.Template2D method), 77
future_dict (gsurface.plot. Template2D attribute), 75

G

get_blossomv () (in
face.decoders.mwpm), 50

get_cluster () (gsurface.decoders.ufns.sim.Toric
method), 68

get_cluster ()
face.decoders.unionfind.sim.Toric
58

get_neighbor () (gsurface.decoders._template.Plot
static method), 50

get_neighbor () (gsurface.decoders._template.Sim
static method), 48

module qsur-

(gsur-
method),

get_neighbor () (gsur-
face.decoders.mwpm.sim.Planar static
method), 53

get_neighbor () (gsur-

face.decoders.mwpm.sim.Toric static method),
52

get_neighbor () (gsurface.decoders.ufns.sim.Toric
static method), 69

get_neighbor () (gsur-
face.decoders.unionfind.sim.Toric static
method), 61

get_neighbors () (gsurface.decoders._template.Plot
method), 50

get_neighbors () (gsurface.decoders._template.Sim
method), 48

get_neighbors () (gsur-
face.decoders.mwpm.sim.Planar method),
53

get_neighbors () (gsur-
face.decoders.mwpm.sim.Toric method),
52

get_neighbors () (gsurface.decoders.ufns.sim.Toric
method), 69

get_neighbors () (gsur-
face.decoders.unionfind.sim.Toric method),
61

get_qubit_distances () (gsur-
face.decoders.mwpm.sim.Planar static
method), 53

get_qubit_distances|() (gsur-

face.decoders.mwpm.sim.Toric static method),

get_syndrome () (gsur-
face.decoders.mwpm.sim.Planar method),
53

get_syndrome () (gsur-
face.decoders.mwpm.sim.Toric method),
52

get_syndrome () (gsurface.decoders.ufns.sim.Toric
method), 69

get_syndrome () (gsur-
face.decoders.unionfind.sim.Toric method),
61

grow_boundary () (gsurface.decoders.ufns.sim.Toric
method), 67

grow_boundary () (gsur-
face.decoders.unionfind.sim.Toric method),
60

grow_bucket () (gsurface.decoders.ufns.sim.Toric
method), 69

grow_bucket () (gsur-
face.decoders.unionfind.sim.Toric method),
59

grow_clusters () (gsurface.decoders.ufns.sim.Toric
method), 67

grow_clusters () (gsur-
face.decoders.unionfind.sim.Toric method),
59

grow_node () (gsurface.decoders.ufns.sim.Toric
method), 67

grow_node_boundary ()
face.decoders.ufns.sim.Toric method), 68

gui_methods (gsurface.errors._template.Plot
tribute), 45

gui_permanent (gsurface.errors._template.Plot at-
tribute), 45

(gsur-

at-

H

history_at_newest (gsurface.plot.Template2D at-
tribute), 75

history_at_newest () (gsur-

face.codes._template.plot. PerfectMeasurements. Figure

property), 23

history_at_newest () (gsur-

face.codes.planar.plot. PerfectMeasurements.Figure

property), 39

history_at_newest () (gsur-
face.codes.toric.plot. PerfectMeasurements.Figure
property), 31

history_dict (gsurface.plot.Template2D attribute),
74

90

Index

Qsurface

history_event_iter (gsurface.plot.Template2D at-
tribute), 75

history_iter (gsurface.plot.Template2D attribute),
74

history_iter_names (gsurface.plot.Template2D at-
tribute), 74

history_iters (gsurface.plot. Template2D attribute),

74

|

init_config() (in module qsur-
face.decoders._template), 48

init_errors () (gsur-

face.codes._template.plot. PerfectMeasurements
method), 25

init_errors () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 20

init_errors () (gsur-
face.codes._template.sim. PerfectMeasurements
method), 17

init_errors() (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 41

init_errors () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 37

init_errors () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 35

init_errors () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 32

init_errors () (gsur-
face.codes.toric.sim. FaultyMeasurements
method), 28

init_errors () (gsur-

face.codes.toric.sim.PerfectMeasurements
method), 26

init_legend() (gsur-

face.codes._template.plot. PerfectMeasurements. Figure

method), 22

init_legend{() (gsur-

init_logical_operator () (gsur-
face.codes._template.sim. PerfectMeasurements
method), 17

init_logical_operator () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 41

init_logical_operator () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 37

init_logical_operator () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 34

init_logical_operator () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 33

init_logical_operator ()
face.codes.toric.sim. FaultyMeasurements
method), 29

init_logical_operator () (gsur-
face.codes.toric.sim.PerfectMeasurements
method), 26

init_parity_check () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 41

init_parity_check () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 37

init_parity_check () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 34

init_parity_check () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 33

init_parity_check ()
face.codes.toric.sim.FaultyMeasurements
method), 29

init_parity_check () (gsur-
face.codes.toric.sim. PerfectMeasurements
method), 26

init_plot () (gsurface.codes._template.plot.PerfectMeasurements.Figui

method), 22

init_plot () (gsurface.codes.planar.plot.PerfectMeasurements.Figure
method), 39

(gsur-

(gsur-

face.codes.planar.plot. PerfectMeasurements.Figurenit_plot () (gsurface.codes.toric.plot. PerfectMeasurements.Figure

method), 39

init_legend() (gsur-

face.codes.toric.plot. PerfectMeasurements. Figure

method), 31

init_logical_operator () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 25

init_logical_operator () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 20

method), 31

init_surface () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 25

init_surface () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 19

init_surface() (gsur-
face.codes._template.sim.PerfectMeasurements
method), 17

Index

91

Qsurface

init_surface () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 41

init_surface () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 37

init_surface () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 34

init_surface () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 33

init_surface () (gsur-
face.codes.toric.sim. FaultyMeasurements
method), 29

init_surface () (gsur-

face.codes.toric.sim. PerfectMeasurements
method), 26

initialize () (in module gsurface.main), 7

initialize () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 21

initialize () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 21

initialize () (gsur-
face.codes._template.sim. PerfectMeasurements
method), 17

initialize () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 42

initialize () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 37

initialize () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 35

initialize () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 33

initialize () (gsur-
face.codes.toric.sim.FaultyMeasurements
method), 29

initialize () (gsur-

face.codes.toric.sim. PerfectMeasurements
method), 27

instance (gsurface.codes._template.sim.PerfectMeasurements

attribute), 17
interact_axes (gsurface.plot. Template2D attribute),
75
interact_bodies
tribute), 75

(gsurface.plot. Template2D at-

J

Junction (class in gsurface.decoders.ufns.elements),
65

legend_titles (gsurface.errors._template.Plot at-
tribute), 45

line_color_match (gsur-
face.decoders._template.Plot attribute),
49

line_color_normal (gsur-
face.decoders._template.Plot attribute),

49
1ists (gsurface.main.BenchmarkDecoder attribute), 10

lists_mean_var () (gsur-
face.main.BenchmarkDecoder method),
11

load_interactive_backend() (gsur-

face.codes._template.plot. PerfectMeasurements. Figure

method), 23

load_interactive_backend () (gsur-

face.codes.planar.plot. PerfectMeasurements.Figure

method), 39

load_interactive_backend() (gsur-
face.codes.toric.plot. PerfectMeasurements. Figure
method), 31

load_interactive_backend ()
face.plot. Template2D method), 76

load_params () (gsurface.plot.PlotParams method),
72

logical_operators (gsur-
face.codes._template.sim. PerfectMeasurements
attribute), 17

logical_state (gsur-
face.codes._template.sim. PerfectMeasurements
attribute), 17

(gsur-

M

main_ax (gsurface.plot.Template2D attribute), 74

match_blossomv () (gsur-
face.decoders.mwpm.sim.Planar static
method), 54

match_blossomv () (gsur-

face.decoders.mwpm.sim.Toric static method),
52

match_networkx () (gsur-
face.decoders.mwpm.sim.Planar static
method), 54

match_networkx () (gsur-

face.decoders.mwpm.sim.Toric static method),
52

.) . match_syndromes () (gsur-

interactive (gsurface.plot.Template2D attribute), 74 face.decoders.mwpm.sim.Planar method)
54

92 Index

Qsurface

(gsur-
method),

match_syndromes ()
face.decoders.mwpm.sim.Toric
51

matching_lines (gsurface.decoders._template.Plot
attribute), 49

measure () (gsurface.codes.elements.AncillaQubit
method), 15

measure () (gsurface.codes.elements.PseudoQubit
method), 16

measured_state (gsur-
face.codes.elements.AncillaQubit attribute),
15

measurement_error (gsur-
face.codes.elements.AncillaQubit attribute),

15
module
gsurface.codes.elements, 14
gsurface.decoders._template, 47
gsurface.decoders.mwpm, 50
gsurface.decoders.mwpm.plot, 55
gsurface.decoders.ufns, 63
.ufns.elements, 63
.unionfind, 55

gsurface.decoders
gsurface.decoders
gsurface.decoders
55
gsurface.errors._template, 43
gsurface.errors.erasure, 46
gsurface.errors.pauli, 46
gsurface.main, 7
gsurface.plot, 72
gsurface.threshold, 11

N

neighbors (gsurface.decoders.ufns.elements.Node at-
tribute), 64

new_artist () (gsur-

face.codes._template.plot. PerfectMeasurements. Figure

new_properties () (gsur-
face.codes.planar.plot. PerfectMeasurements.Figure
method), 40

new_properties () (gsur-
face.codes.toric.plot. PerfectMeasurements.Figure
method), 31

new_properties ()
method), 78

no_error (gsurface.codes._template.sim.PerfectMeasurements
attribute), 17

Node (class in gsurface.decoders.ufns.elements), 63

nodes (gsurface.codes.elements.Edge attribute), 15

ns_delay () (qsurface.decoders.ufns.elements.Node
method), 64

ns_parity () (gsurface.decoders.ufns.elements.Junction
method), 65

ns_parity () (gsurface.decoders.ufns.elements.Node
method), 64

ns_parity () (gsurface.decoders.ufns.elements.OddNode
method), 65

ns_parity () (gsurface.decoders.ufns.elements.Syndrome
method), 65

(gsurface.plot. Template2D

.unionfind. elements,o

OddNode (class in gsurface.decoders.ufns.elements), 65

old_bound (gsurface.decoders.ufns.elements.Node at-
tribute), 64

on_bound (gsurface.decoders.unionfind.elements.Cluster
attribute), 56

P

parent (gsurface.decoders.unionfind.elements.Cluster

attribute), 56
(gsurface.decoders.ufns.elements.Node

tribute), 64

parity (gsurface.decoders.unionfind.elements.Cluster

attribute), 56

parity at-

method), 23 parity_qubits (gsur-
new_artist () (gsur- face.codes.elements.AncillaQubit attribute),

face.codes.planar.plot. PerfectMeasurements.Figure 14

method), 39 peel_clusters () (gsurface.decoders.ufns.sim.Toric
new_artist () (gsur- method), 69

face.codes.toric.plot. PerfectMeasurements.Figure peel_clusters () (qsur-

method), 31 face.decoders.unionfind.sim.Toric method),
new_artist () (gsurface.plot.Template2D method), 60

77 peel_leaf () (gsurface.decoders.ufns.sim.Toric
new_bound (gsurface.decoders.ufns.elements.Node at- method), 69

tribute), 64 peel_leaf () (gsurface.decoders.unionfind.sim.Toric
new_boundary (gsurface.decoders.ufns.sim.Toric at- method), 60

tribute), 66 PerfectMeasurements (class in qsur-
new_properties () (gsur- face.codes._template.plot), 21

Jace.codes._template.plot. PerfectMeasurements. Figuhes o «t Measurement s (class in gsur-

method), 23 face.codes._template.sim), 16
Index 93

Qsurface

PerfectMeasurements (class in qsur-
face.codes.planar.plot), 38

PerfectMeasurements (class in qsur-
face.codes.planar.sim), 34

PerfectMeasurements (class in qsur-
face.codes.toric.plot), 30

PerfectMeasurements (class in qsur-
face.codes.toric.sim), 26

PerfectMeasurements.Figure (class in gqsur-
face.codes._template.plot), 22

PerfectMeasurements.Figure (class in qsur-
face.codes.planar.plot), 38

PerfectMeasurements.Figure (class in qsur-
face.codes.toric.plot), 30

phaseflip () (gsurface.errors.pauli.Sim static
method), 46

place_bucket () (gsurface.decoders.ufns.sim.Toric
method), 70

place_bucket () (gsur-
face.decoders.unionfind.sim.Toric method),

60
Planar (class in gsurface.decoders.mwpm.plot), 55
Planar (class in gsurface.decoders.mwpm.sim), 53
Planar (class in gsurface.decoders.ufns.plot), 70
Planar (class in gsurface.decoders.ufns.sim), 70
Planar (class in gsurface.decoders.unionfind.plot), 62
Planar (class in gsurface.decoders.unionfind.sim), 61
Planar.Figure2D (class in qsur-
face.decoders.unionfind.plot), 63
Planar.Figure3D (class in
face.decoders.unionfind.plot), 63
Plot (class in gsurface.decoders._template), 49
Plot (class in gsurface.errors._template), 43
Plot (class in gsurface.errors.erasure), 46
Plot (class in gsurface.errors.pauli), 46
plot_ancilla () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 21
plot_ancilla () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 42
plot_ancilla() (gsur-
face.codes.toric.plot. PerfectMeasurements

qsur-

plot_matching_edge () (gsur-
face.decoders._template. Plot method), 49

plot_params (gsurface.errors._template.Plot at-
tribute), 45

PlotParamns (class in gsurface.plot), 72

print_tree () (in module qsur-
face.decoders.ufns.elements), 65

pseudo_qubits (gsur-

face.codes._template.sim. PerfectMeasurements
attribute), 16
PseudoEdge (class in gsurface.codes.elements), 16
PseudoQubit (class in gsurface.codes.elements), 16

Q

gsurface.codes.elements
module, 14
gsurface.decoders._template
module, 47
gsurface.decoders.mwpm
module, 50
gsurface.decoders.mwpm.plot
module, 55
gsurface.decoders.ufns
module, 63
gsurface.decoders.ufns.elements
module, 63
gsurface.decoders.unionfind
module, 55
gsurface.decoders.unionfind.elements
module, 55
gsurface.errors._template
module, 43
gsurface.errors.erasure
module, 46
gsurface.errors.pauli
module, 46
gsurface.main
module, 7
gsurface.plot
module, 72
gsurface.threshold
module, 11
Qubit (class in gsurface.codes.elements), 14

method), 33
plot_data () (gsurface.codes._template.plot. PerfectMeafedrements

method), 21 radius (gsurface.decoders.ufns.elements.Node at-
plot_data () (gsurface.codes.planar.plot.PerfectMeasurements tribute), 64

method), 42 . random_error () (gsurface.errors._template.Sim
plot_data () (gsurface.codes.toric.plot. PerfectMeasurements method), 43

method), 33 . random_error () (gsurface.errors.erasure.Sim
plot_data() (gsurface.threshold. ThresholdFit method), 47

method), 13 random_error () (gsurface.errors.pauli.Sim method),
plot_error () (gsurface.errors._template.Plot 46

method), 45

94

Index

Qsurface

random_errors () (gsur-
face.codes._template.plot. PerfectMeasurements
method), 21

random_errors () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 19

random_errors () (gsur-
face.codes._template.sim. PerfectMeasurements
method), 18

random_errors () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 42

random_errors () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 37

random_errors () (gsur-
face.codes.planar.sim. PerfectMeasurements
method), 36

random_errors () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 33

random_errors () (gsur-
face.codes.toric.sim. FaultyMeasurements
method), 29

random_errors () (gsur-

face.codes.toric.sim.PerfectMeasurements
method), 27

random_errors_layer () (gsur-
face.codes._template.sim. FaultyMeasurements
method), 19

random_errors_layer () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 38

random_errors_layer () (gsur-
face.codes.toric.sim. FaultyMeasurements
method), 29

random_measure_layer () (gsur-

face.codes._template.sim. FaultyMeasurements
method), 21

random_measure_layer () (gsur-
face.codes.planar.sim. FaultyMeasurements
method), 38

random_measure_layer () (gsur-
face.codes.toric.sim. FaultyMeasurements
method), 29

read_config() (in module qsur-

face.decoders._template), 47

read_csv () (in module gsurface.threshold), 13

reinitialized (gsurface.codes.elements.DataQubit
attribute), 14

root_1list (gsurface.decoders.ufns.elements.Node at-
tribute), 64

run () (in module gsurface.main), 8

run_many () (in module gsurface.threshold), 11

run_multiprocess () (in module gsurface.main), 9

S

short (gsurface.decoders.ufns.elements.Node at-
tribute), 64
show_corrected () (gsur-

face.codes._template.plot. PerfectMeasurements
method), 21

show_corrected () (gsur-
face.codes.planar.plot. PerfectMeasurements
method), 42

show_corrected () (gsur-
face.codes.toric.plot. PerfectMeasurements
method), 34

Sim (class in gsurface.decoders._template), 48

Sim (class in gsurface.errors._template), 43

Sim (class in gsurface.errors.erasure), 46

Sim (class in gsurface.errors.pauli), 46

simulate () (gsurface.codes._template.sim.FaultyMeasurements

method), 19

simulate () (gsurface.codes.planar.sim.FaultyMeasurements

method), 38

simulate () (gsurface.codes.toric.sim.FaultyMeasurements

method), 29

size (gsurface.decoders.unionfind.elements.Cluster at-
tribute), 56

state (gsurface.codes.elements.AncillaQubit attribute),
14

state (gsurface.codes.elements.DataQubit attribute),
14

state (gsurface.codes.elements.Edge attribute), 15

static_forest () (gsurface.decoders.ufns.sim.Toric
method), 70

static_forest ()
face.decoders.unionfind.sim.Toric
61

support (gsurface.decoders.unionfind.elements.Cluster
attribute), 56

support (gsurface.decoders.unionfind.sim.Toric
tribute), 57

Syndrome (class in gsurface.decoders.ufns.elements),
65

syndrome (gsurface.codes.elements.AncillaQubit at-
tribute), 15

(gsur-
method),

at-

T

Template?2D (class in gsurface.plot), 73

Template3D (class in gsurface.plot), 78

temporary_changes (gsurface.plot.Template2D at-
tribute), 75

temporary_properties () (gsur-

face.codes._template.plot. PerfectMeasurements. Figure

method), 24

Index

95

Qsurface

temporary_properties () (gsur- attribute), 14
face.codes.planar.plot. PerfectMeasurements.Figure
method), 40
temporary_properties () (gsur-
face.codes.toric.plot. PerfectMeasurements.Figure
method), 32
temporary_properties () (gsur-

face.plot. Template2D method), 78
temporary_saved (gsurface.plot.Template2D at-
tribute), 75
ThresholdFit (class in gsurface.threshold), 13
Toric (class in gsurface.decoders.mwpm.plot), 55
Toric (class in gsurface.decoders.mwpm.sim), 51
Toric (class in gsurface.decoders.ufns.plot), 70
Toric (class in gsurface.decoders.ufns.sim), 66
Toric (class in gsurface.decoders.unionfind.plot), 62
Toric (class in gsurface.decoders.unionfind.sim), 57

Toric.Figure2D (class in qsur-
face.decoders.unionfind.plot), 62

Toric.Figure3D (class in qsur-
face.decoders.unionfind.plot), 62

trivial ancillas (gsur-

face.codes._template.sim. PerfectMeasurements
attribute), 17

U

union () (gsurface.decoders.unionfind.elements.Cluster

method), 57

union_bucket () (gsurface.decoders.ufns.sim.Toric
method), 68

union_bucket () (gsur-
face.decoders.unionfind.sim.Toric method),
60

union_check () (gsurface.decoders.ufns.sim.Toric
method), 70

union_check () (gsur-
face.decoders.unionfind.sim.Toric method),
60

V

value_to_list () (gsur-
face.main.BenchmarkDecoder method),

11
values (gsurface.main.BenchmarkDecoder attribute),
10

W

waited (gsurface.decoders.ufns.elements.Node at-
tribute), 64

write_config() (in module qsur-
face.decoders._template), 47

Z

z_neighbors (qsurface.codes.elements.AncillaQubit

96

Index

	Installation
	Requirements

	Usage
	Plotting
	Command line interface

	Modules
	Running simulations
	Running a threshold simulation
	Code elements
	Template code
	Code types
	Template error
	Error types
	Template decoder
	Decoders
	Plotting template

	License
	Indices and tables
	Bibliography
	Python Module Index
	Index

